Midterm Exam No. 01 (2014 Summer)

PHYS 203B: College Physics

Date: 2014 Jun 23

(Name)

(Signature)

Total: 140 points

- 1. (10 points.) Four identical metal spheres have charges of $q_A = +Q$, $q_B = +\frac{1}{4}Q$, $q_C = -\frac{3}{4}Q$, and $q_D = -\frac{3}{2}Q$. Spheres A, B, and C, are brought together so they touch, and then they are separated. Then sphere C is touched to sphere D and separated. What is the resultant charge on sphere C?
- 2. (10 points.) What is the electric force between a glass ball with $3.0\,\mu\text{C}$ of charge and a rubber ball with $-4.0\,\mu\text{C}$ of charge when their centers are separated by $5\,\text{cm}$?
- 3. (20 points.) Four point charges have equal magnitudes, all four being positive. These charges are fixed to the corners of a square. The magnitude of each of the charges is $4.0\,\mu\text{C}$, and the lengths of the sides of the square are $2.0\,\text{cm}$. Calculate the magnitude of the net force that each charge experiences.
- 4. (10 points.) An electric field of 246,500 N/C points due west at a certain spot. What are the magnitude and direction of the force that acts on a charge of $-6.8 \,\mu\text{C}$ at this spot?
- 5. (20 points.) Charges of -q and +2q are fixed in place, with a distance of $a=2.0\,\mathrm{m}$ between them. See Fig. 1. A dashed line is drawn through the negative charge, perpendicular to the line between the charges. On the dashed line, at a distance y from the negative charge, there is at least one spot where the total potential is zero. Find y.



Figure 1: Problem 5

6. (10 points.) A proton and an electron are moving due east in a constant electric field that also points due east. The electric field has a magnitude of $4.3 \times 10^5 \text{N/C}$. Determine the ratio of the magnitude of the acceleration of the proton to that of the electron.

MTE-01, Prob. 1

Step 1:
$$q_A = +Q$$
 $q_B = +\frac{1}{4}Q$ $q_c = -\frac{3}{4}Q$ $q_D = -\frac{3}{2}Q$
 $q_D = -\frac{3}{2}Q$
 $q_D = -\frac{3}{2}Q$
 $q_D = -\frac{3}{2}Q$
 $q_D = -\frac{3}{2}Q$

step 3:
$$q_A = q_B = +\frac{1}{6}Q$$
 $q_C = q_A = \frac{+\frac{1}{6}Q - \frac{3}{2}Q}{2}$ $= -\frac{2}{3}Q$

Anewer:
$$q_c = -\frac{2}{3}Q$$

MTE-01, Prob. 2
$$F = \frac{k9.92}{k^2} = \frac{(8.99 \times 10^9) \times (3 \times 10^6) \times (4 \times 10^6)}{(5 \times 10^2)^2} = 43.2 \, \text{N}, \text{ attractive }$$
(toward each otter)

MTE-01, Prob 3
$$\vec{F}_{42}$$
 \vec{F}_{42} $|\vec{F}_{41}| = |\vec{F}_{43}| = \frac{k q^2}{a^2}$

$$|\vec{F}_{41}| = |\vec{F}_{43}| = \frac{k q^2}{a^2}$$

$$|\vec{F}_{42}| = \frac{k q^2}{(\sqrt{2}a)^2} = \frac{k q^2}{2a^2}$$

$$|\vec{F}_{bb}| = \frac{kq^2}{a^2} \cos 45 + \frac{kq^2}{a^2} \cos 45 + \frac{kq^2}{2a^2}.$$

$$= \frac{kq^2}{a^2} \left(\frac{\sqrt{2} + \frac{1}{2}}{2} \right)$$

$$= \frac{(8.99 \times 10^9) \times (4 \times 10^6)^2}{(2 \times 10^2)^2} \left(\frac{\sqrt{2} + \frac{1}{2}}{2} \right)$$

$$= 688.4 \text{ N}$$

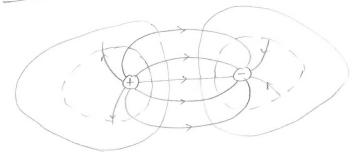
$$\vec{F} = q \vec{E} = (-6.8 \times 10^6) \times (2.465 \times 10^5) N$$
= 1.68 N to East

$$M7E-01$$
, $Pnb = 0$

$$V_{1}+V_{2}=0$$

$$V_{2}+V_{2}=0$$

$$V_{3}+V_{2}=0$$


$$V_{4}+V_{2}=0$$

$$V_{5}+V_{6$$

M7E-01, Prob 6

MTE-01, Prob 7
$$\Phi_{E} = \frac{Q_{enclosed}}{\epsilon_{0}} = \frac{+se-se}{\epsilon_{0}} = 0.$$

MTE-01, Prob 8

MTE-01, Prob 9

(a)
$$a = \frac{9E}{m} = \frac{1.6 \times 10^{19} \times 620}{1.67 \times 10^{27}} = 5.94 \times 10^{10} \frac{m}{3^2}$$

(a)
$$\Delta t = \frac{1.4 \times 10^6}{5.94 \times 10^9} = 2.36 \times 10^{-5} \text{ sec}$$
.
(b) $V_1 = V_1 + a \Delta t$.
 $1.4 \times 10^6 = 0 + (5.94 \times 10^9) \Delta t$
 0^2
 16.50 m

(c)
$$\Delta x = \frac{V_1^2 - V_1^2}{2a} = \frac{(1.4 \times 10^6)^2}{2 \times (5.94 \times 10^6)^2} = 16.50 \text{ m}$$

(c)
$$\Delta x = \frac{\sqrt{2} - V_i}{2a} = \frac{1}{2 \times (5.94 \times 10^{10})}$$

(d) $K_p = \frac{1}{2} m_p V_p^2 = \frac{1}{2} \times (1.67 \times 10^{27}) \times (1.4 \times 10^{6})^2 = 1.64 \times 10^{15} \text{ J}$

MTE-01, Prob 10

$$E-01$$
, $Prob 10$

$$R_{bd} = \frac{3}{R}$$
 $R_{bd} = \frac{8}{3} = \frac{300}{3} = 1000$

(b)
$$V_1 = \frac{1}{2}$$
 $V_2 = \frac{10}{300} = 0.033 \text{ A}$

$$I_2 = \frac{V_2}{R_2} = \frac{10}{300} = 0.033 \text{ A}$$

$$I_3 = \frac{V_3}{R_3} = \frac{10}{300} = 6.033 \text{ A}$$

$$0.33 \text{ W}$$