Homework No. 03 (Fall 2014)

PHYS 520A: Electromagnetic Theory I

Due date: Tuesday, 2014 Sep 16, 4.00pm

1. (Ref. Milton's lecture notes.) A plane wave is described by electric and magnetic fields of the form

$$\mathbf{E} = \mathbf{e}_0 e^{i\mathbf{k}\cdot\mathbf{r} - i\omega t},\tag{1}$$

$$\mathbf{B} = \mathbf{b}_0 e^{i\mathbf{k} \cdot \mathbf{r} - i\omega t},\tag{2}$$

where \mathbf{e}_0 and \mathbf{b}_0 are constants. From Maxwell's equations in free space (no charges or currents)

- (a) Determine the relation between \mathbf{e}_0 , \mathbf{b}_0 , and \mathbf{k} .
- (b) Determine the relation between ω and \mathbf{k} .
- (c) Verify the statement of conservation of energy for a plane wave.
- (d) Verify the statement of conservation of momentum for a plane wave.
- 2. A plane wave is incident, in vacuum, on a perfectly absorbing flat screen.
 - (a) Without compromising generality we can choose the screen at $z = z_a$. Starting with the statement of conservation of linear momentum,

$$\frac{\partial \mathbf{G}}{\partial t} + \mathbf{\nabla} \cdot \mathbf{T} + \mathbf{f} = 0, \tag{3}$$

integrate on the volume between $z = z_a - \delta$ and $z = z_a + \delta$ for infinitely small $\delta > 0$. Interpret the integral of force density \mathbf{f} as the total force, \mathbf{F} , on the plate. Further, note that the integral of momentum density \mathbf{G} goes to zero for infinitely small δ . Thus, obtain

$$\mathbf{F} = -\int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \int_{z_a - \delta}^{z_a + \delta} dz \, \mathbf{\nabla} \cdot \mathbf{T}. \tag{4}$$

(b) Use divergence theorem to conclude

$$\mathbf{F} = -\oint d\mathbf{a} \cdot \mathbf{T},\tag{5}$$

where the closed surface encloses the volume between $z = z_a - \delta$ and $z = z_a + \delta$ for infinitely small $\delta > 0$. Choose the plane wave to be incident on the side $z = z - \delta$ of the plate, and assuming $\mathbf{E} = 0$ and $\mathbf{B} = 0$ on the side $z = z + \delta$, conclude that

$$\frac{\mathbf{F}}{A} = \hat{\mathbf{z}} \cdot \mathbf{T}|_{z=z_a-\delta},\tag{6}$$

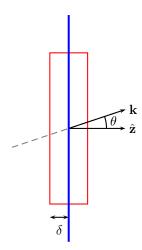


Figure 1: A plane wave with direction of propagation \mathbf{k} incident on a screen.

where A is the total area of the screen. The electromagnetic stress tensor T in these expressions is given by

$$T = 1U - (DE + BH), \tag{7}$$

where U is the electromagnetic energy density,

$$U = \frac{1}{2}(\mathbf{D} \cdot \mathbf{E} + \mathbf{B} \cdot \mathbf{H}). \tag{8}$$

(c) For the particular case when the plane wave is incident normally on the screen ($\theta = 0$ in Fig. 1) calculate the force per unit area in the direction normal to the screen by evaluating

$$\frac{\mathbf{F} \cdot \hat{\mathbf{z}}}{A}.\tag{9}$$

Express the answer in terms of U using the properties of a plane wave: $\mathbf{k} \cdot \mathbf{E} = 0$, $\mathbf{k} \cdot \mathbf{B} = 0$, $\mathbf{E} \cdot \mathbf{B} = 0$, $|\mathbf{E}| = c|\mathbf{B}|$, and $kc = \omega$.

(d) Consider the case when the plane wave is incident obliquely on the screen such that $\hat{\mathbf{k}} \cdot \hat{\mathbf{z}} = \cos \theta$ and $\mathbf{H} \cdot \hat{\mathbf{z}} = 0$. Calculate the force per unit area in the direction normal to the screen by evaluating

$$\frac{\mathbf{F} \cdot \hat{\mathbf{z}}}{A},\tag{10}$$

and the force per unit area tangential to the screen by evaluating

$$\frac{\mathbf{F} \cdot \hat{\mathbf{x}}}{A}.\tag{11}$$

Express the answer in terms of U and θ using the properties of a plane wave.