Midterm Exam 01 (2015 Fall)

PHYS 203B: College Physics

Date: 2015 Sep 17

(Name)	(Signature)

Instructions

- 1. Seating direction: Please be seated on seats with seat-numbers divisible by 3.
- 2. Total time = 75 minutes.
- 3. There are 10 questions in this exam.
- 4. Equation sheet is provided separately.
- 5. To be considered for partial credit you need to show your work in detail and organize it clearly.
- 6. A simple calculator (with trigonometric functions) is allowed.
- 7. Use of mobile phones is strictly prohibited. It should stay out of reach during the exam.

1. (10 points.) A hydrogen atom consists of an electron orbiting a proton. Determine the ratio of the gravitational force and the electrostatic force. (The radius of the hydrogen atom is about 5.3×10^{-11} m, which is in principle not necessary for this evaluation.)

2. (10 points.) Two identical metallic objects carry the following charges: $+2.0\,\mu\text{C}$, and $-8.0\,\mu\text{C}$. The objects are brought simultaneously into contact, so that they touch each other. Determine the Coulomb force between the objects after they are separated by a distance $10.0\,\text{cm}$.

3. (10 points.) Fig. 1 shows three point charges that lie in the x-y plane. Given $q_1 = -5.0 \,\mu\text{C}$, $q_2 = +4.0 \,\mu\text{C}$, $q_3 = -6.0 \,\mu\text{C}$, charges q_1 and q_2 are separated by a distance of 4.0 cm, and charges q_1 and q_3 are separated by a distance of 6.0 cm. Find the magnitude and direction of the net electrostatic force on charge q_1 .

Figure 1: Problem 3

4. (10 points.) The drawing shows four charges, $q_1 = +1.0 \,\mu\text{C}$, $q_2 = +2.0 \,\mu\text{C}$, $q_3 = -3.0 \,\mu\text{C}$, $q_4 = +2.0 \,\mu\text{C}$, that are placed on the x and y axes. They are all located at the same distance of $L = 40.0 \,\text{cm}$ from the origin marked as \times . Determine the magnitude and direction of the net electric field at the origin.

Figure 2: Problem 4

5. (10 points.) Two charges, $q_1 = +8.0 \,\mu\text{C}$ and $q_2 = -2.0 \,\mu\text{C}$, are separated by a distance of 1.0 m. See Fig. 3. Find the spot on the line between the charges where the net electric field is zero.

Figure 3: Problem 5

$$\frac{a_e}{a_p}. (1)$$

7. (10 points.) A proton is released from rest in a uniform electric field of $E = 4.0 \times 10^3 \,\text{N/C}$. Determine the distance travelled by the proton in one nanosecond.

8. (10 points.) The drawing shows an edge-on view of a planar surface of area $2.0\,\mathrm{m}^2$. Given $\theta = 30^\circ$. The electric field vector $\vec{\mathbf{E}}$ in the drawing is uniform and has a magnitude of $3.0 \times 10^2\,\mathrm{N/C}$.

Caution: Note that area is a vector.

Figure 4: Problem 8.

9.	(10 points.) And the electric flux	n electron is p through the s	laced at the urface of the	center of a n spherical she	eutral sphericell.	cal shell.	Determine

10. (10 points.) Consider a perfectly conducting sphere of radius $R=7.0\,\mathrm{cm}$ with charge $Q=1.0\,\mu\mathrm{C}$. Determine the electric flux through the surface of a (Gaussian) sphere of radius $5.0\,\mathrm{cm}$, concentric with respect to the conducting sphere.