Final Exam (2017 Spring)

PHYS 203B-001: College Physics

Date: 2017 May 10

(Name)	(Signature)

Instructions

- 1. Seating direction: Please be seated on seats with seat-numbers divisible by 3.
- 2. Total time = 120 minutes.
- 3. There are 10 questions in this exam, worth a total of 100 points.
- 4. Equation sheet is provided separately.
- 5. To be considered for partial credit you need to show your work in detail and organize it clearly.
- 6. A simple calculator (with trigonometric functions) is allowed.
- 7. Use of mobile phones is strictly prohibited. It should stay out of reach during the exam.

1. (10 points.) Two objects have the same mass $(m_1 = m_2 = 10.0 \,\mathrm{g})$ but different amount of charges on them $(q_1 = +1.0 \,\mu\mathrm{C})$ and $q_2 = +2.0 \,\mu\mathrm{C}$. They are released from rest in a uniform electric field pointing vertically down. Determine the ratio of the times t_1 and t_2 ,

$$\frac{t_1}{t_2},\tag{1}$$

the charges take to move (or 'fall') a vertical distance $y=1.0\,\mathrm{m}$. (Assume that the electric field is large enough that the gravitational effects are negligible.)

2. (10 points.) Two charges, $q_1 = +1.0 \,\mu\text{C}$ and $q_2 = +4.0 \,\mu\text{C}$, are separated by a distance of 10.0 cm. See Figure 1. Find the spot on the line where the net electric field is zero.

Figure 1: Problem 2.

3. (10 points.) Charges of $q_1 = +1.0 \,\mu\text{C}$, $q_2 = +2.0 \,\mu\text{C}$ are assembled as shown in Figure 2. Given $a = 10.0 \,\text{cm}$. Determine the electric potential difference between points A and B.

Figure 2: Problem 3.

4. (10 points.) A potential difference $V=10.0\,\mathrm{V}$ is applied across a capacitor arrangement with two capacitances connected in series, $C_1=10.0\,\mathrm{nF}$ and $C_2=20.0\,\mathrm{nF}$. Find the ratio V_1/V_2 of the voltages across the capacitors.

5. (10 points.) A magnetic field has a magnitude of 1.50 mT and points in the $\hat{\mathbf{z}}$ direction, and an electric field has a magnitude of $6.00\,\mathrm{kN/C}$ pointing in the $\hat{\mathbf{x}}$ direction. A positive $1.0\,\mu\mathrm{C}$ charge moves at a speed of $2.00\times10^6\,\mathrm{m/s}$ in the direction of $\hat{\mathbf{y}}$. Determine the magnitude of the net force that acts on the charge.

6.	(10 points.) In a dentist frequency of 9.00×10^{18} H	t's office, an X-ra Iz. What is the v	y of a tooth is tak wavelength of these	en using X-rays tha X-rays in vacuum?	t have a

7. (10 points.) How far (in meters) is a light-year?

8.	(10 points.) 1.80. Determ) The index of nine the critica	refraction of al angle for to	air is 1.00. tal internal	The index of reflection, a	of refraction of t a benzene-a	of benzene is air interface.

- 9. (10 points.) A 1.00 cm high object is placed upright at a distance 20.0 cm from a concave mirror. The mirror's focal length is 10.0 cm.
 - (a) Determine the radius of curvature of the mirror.
 - (b) Calculate the image distance.
 - (c) What is the magnification?
 - (d) Is the image real or virtual?
 - (e) Is the image inverted or upright?
 - (f) What is height of the image?
 - (g) Confirm your above results by drawing a ray diagram for the above case. Points will be awarded for precision.

- 10. (10 points.) A 1.00 cm high object is placed upright at a distance 5.0 cm from the center of a convex lens (converging lens). The lens' focal length is 10.0 cm.
 - (a) Calculate the image distance.
 - (b) What is the magnification?
 - (c) Is the image real or virtual?
 - (d) Is the image inverted or upright?
 - (e) What is height of the image?
 - (f) Confirm your above results by drawing a ray diagram for the above case. Points will be awarded for precision.