Homework No. 07 (Spring 2017)

PHYS 510: Classical Mechanics

Due date: 2017 Mar 28 (Tuesday) 4.30pm

1. (40 points.) In terms of the Lagrangian function $L(\mathbf{r}, \mathbf{v}, t)$ the action functional $W[\mathbf{r}; t_1, t_2]$ is defined as

$$W[\mathbf{r}; t_1, t_2] = \int_{t_1}^{t_2} dt \, L(\mathbf{r}, \mathbf{v}, t), \tag{1}$$

where $\mathbf{v} = d\mathbf{r}/dt$. For arbitrary infinitesimal coordinate variations

$$\bar{\mathbf{r}}(t) = \mathbf{r}(t) - \delta \mathbf{r}(t), \qquad (2)$$

and infinitesimal general time transformation

$$\bar{t} = t - \delta t(t),\tag{3}$$

the change in action is given by

$$\delta W = \int_{t_1}^{t_2} dt \frac{d}{dt} \Big[\mathbf{p} \cdot \delta \mathbf{r} - H \delta t \Big] \\ + \int_{t_1}^{t_2} dt \left[\delta t \left(\frac{dH}{dt} + \frac{\partial L}{\partial t} \right) + \delta \mathbf{r} \cdot \left(\frac{\partial L}{\partial \mathbf{r}} - \frac{d}{dt} \frac{\partial L}{\partial \mathbf{v}} \right) \right], \tag{4}$$

where the canonical momentum and the Hamiltonian are defined as

$$\mathbf{p} = \frac{\partial L}{\partial \mathbf{v}}$$
 and $H = \mathbf{v} \cdot \mathbf{p} - L$ (5)

respectively. In terms of the Hamiltonian the action takes the form

$$W[\mathbf{r}, \mathbf{p}; t_1, t_2] = \int_{t_1}^{t_2} dt \Big[\mathbf{v} \cdot \mathbf{p} - H(\mathbf{r}, \mathbf{p}, t) \Big].$$
(6)

Show that for for arbitrary infinitesimal coordinate and momentum variations

$$\mathbf{\bar{r}}(t) = \mathbf{r}(t) - \delta \mathbf{r}(t)$$
 and $\mathbf{\bar{p}}(t) = \mathbf{p}(t) - \delta \mathbf{p}(t)$, (7)

and infinitesimal general time transformation, the change in action is given by

$$\delta W = \int_{t_1}^{t_2} dt \frac{d}{dt} \Big[\mathbf{p} \cdot \delta \mathbf{r} - H \delta t \Big] \\ + \int_{t_1}^{t_2} dt \left[\delta t \left(\frac{dH}{dt} - \frac{\partial H}{\partial t} \right) - \delta \mathbf{r} \cdot \left(\frac{d\mathbf{p}}{dt} + \frac{\partial H}{\partial \mathbf{r}} \right) + \delta \mathbf{p} \cdot \left(\frac{d\mathbf{r}}{dt} - \frac{\partial H}{\partial \mathbf{p}} \right) \right].$$
(8)

2. (20 points.) Consider infinitesimal rigid rotation, described by

$$\delta \mathbf{r} = \delta \boldsymbol{\omega} \times \mathbf{r}, \quad \delta \mathbf{p} = \delta \boldsymbol{\omega} \times \mathbf{p}, \quad \delta t = 0, \tag{9}$$

where $d\delta\omega/dt = 0$. Show that the variation in the action under the above rotation is

$$\frac{\delta W}{\delta \boldsymbol{\omega}} = \int_{t_1}^{t_2} dt \left[\mathbf{r} \times \frac{\partial H}{\partial \mathbf{r}} + \mathbf{p} \times \frac{\partial H}{\partial \mathbf{p}} \right] = \mathbf{L}(t_2) - \mathbf{L}(t_1), \tag{10}$$

where $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ is the angular momentum. Thus, state the conditions to be satisfied by the Hamitonian for the angular momentum \mathbf{L} of the system to be conserved.