Homework No. 08 (Spring 2017)

PHYS 510: Classical Mechanics
Due date: 2017 Apr 6 (Thursday) 4.30pm

1. (40 points.) The Hamiltonian for a Kepler problem is
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where r; and ry are the positions of the two constituent particles of masses m; and msy.

(a) Introduce the coordinates representing the center of mass, relative position, total
momentum, and relative momentum:
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respectively, to rewrite the Hamiltonian as
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(b) Show that Hamilton’s equations of motion are given by
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(c) Verify that the Hamiltonian H, the angular momentum L = r X p, and the Laplace-

Runge-Lenz vector
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are the three constants of motion for the Kepler problem.

2. (50 points.) (Refer Landau and Lifshitz, Problem 1 in Chapter 3.)
A simple pendulum, consisting of a particle of mass m suspended by a string of length [
in a uniform gravitational field g, is described by the Hamiltonian
1 .

H= §ml2¢2 — mgl cos ¢. (7)



(a) For initial conditions ¢(0) = ¢ and $(0) = 0 show that
1 .-
§ml2q§2 — mgl cos ¢ = —mgl cos ¢g. (8)

Thus, derive
dt 1 do
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where Ty = 2m4/1/g.

(b) Determine the period of oscillations of the simple pendulum as a function of the
amplitude of oscillations ¢ to be
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where
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is the complete elliptic integral of the first kind.

(c¢) Using the power series expansion
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show that for small oscillations (¢y/2 < 1)

T:T0[1+¢—g+...]. (13)
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(d) Estimate the percentage error made in the approximation 7' ~ Tj for ¢g ~ 60°.

(e) Plot the time period T as a function of ¢y. What can you conclude about the time
period for ¢y = 77



