Homework No. 11 (Fall 2017)

PHYS 440: Quantum Mechanics

Due date: 2017 Dec 7 (Thursday) 4.30pm

1. (20 points.) The polar equation of a conic of eccentricity ε is

$$r = \frac{a(1 - \varepsilon^2)}{1 - \varepsilon \cos \theta},\tag{1}$$

where 2a is the major-axis of the ellipse. The directrix of an ellipse is a line perpendicular to the major-axis at a distance d from the focus (origin). For an ellipse, the ratio between the radial distance of a point on the ellipse from the origin, and the distance of the point from the directrix, is the eccentricity. Thus, determine d in terms of a and ε .

- 2. (20 points.) The components of the position and momentum operator, \mathbf{r} and \mathbf{p} , respectively, satisfy the commutation relations $[r_i, p_j] = i\hbar \delta_{ij}$. Verify the following:
 - (a) $\mathbf{r} \times \mathbf{p} + \mathbf{p} \times \mathbf{r} = 0$.
 - (b) $\mathbf{r} \cdot \mathbf{p} \mathbf{p} \cdot \mathbf{r} = 3i\hbar$.
 - (c) $(\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{p}) (\mathbf{b} \cdot \mathbf{p})(\mathbf{a} \cdot \mathbf{r}) = i\hbar(\mathbf{a} \cdot \mathbf{b})$, where \mathbf{a} and \mathbf{b} and numerical.
 - (d) $\mathbf{r} \times (\mathbf{r} \times \mathbf{p}) = \mathbf{r} \mathbf{p} \cdot \mathbf{r} \mathbf{p} r^2 + i\hbar \mathbf{r}$.
- 3. (20 points.) Using commutation relations between r, p, and L, verify the following:
 - (a) $\mathbf{p} \times \mathbf{L} + \mathbf{L} \times \mathbf{p} = 2i\hbar \mathbf{p}$.
 - (b) $-\mathbf{L} \times \mathbf{p} \cdot \mathbf{r} = L^2$.
 - (c) $\mathbf{p} \times \mathbf{L} \cdot \mathbf{p} = 2i\hbar \, p^2$.
- 4. (Extra Credit.) Using commutation relations between r, p, and L, verify the relation

$$\mathbf{p} \times \mathbf{L} \cdot \mathbf{p} = 2i\hbar \, p^2. \tag{2}$$

Thus, verify that either of the three equalities for

$$\mathbf{M} = -\frac{1}{2} \left(\mathbf{p} \times \mathbf{L} - \mathbf{L} \times \mathbf{p} \right) = -\mathbf{p} \times \mathbf{L} + i\hbar \mathbf{p} = \mathbf{L} \times \mathbf{p} - i\hbar \mathbf{p}$$
(3)

leads to

$$M^2 = (L^2 + \hbar^2)p^2. (4)$$

Comment: This ensures that either of the following three expressions for the Axial vector

$$\mathbf{A} = \hat{\mathbf{r}} - \frac{1}{\mu Z e^2} \frac{1}{2} \left(\mathbf{p} \times \mathbf{L} - \mathbf{L} \times \mathbf{p} \right)$$
 (5a)

$$= \hat{\mathbf{r}} - \frac{1}{\mu Z e^2} \mathbf{p} \times \mathbf{L} + \frac{i\hbar}{\mu Z e^2} \mathbf{p}$$
 (5b)

$$= \hat{\mathbf{r}} + \frac{1}{\mu Z e^2} \mathbf{L} \times \mathbf{p} - \frac{i\hbar}{\mu Z e^2} \mathbf{p}$$
 (5c)

leads to

$$A^{2} = 1 + \frac{2(L^{2} + \hbar^{2})H}{\mu Z^{2}e^{4}}.$$
 (6)

This leads to the energy levels predicted by the Bohr model, after using the Bohr quantization condition $L = n' \hbar$, where $n' = 0, 1, 2, \ldots$, and presuming that the orbit is a circle that has eccentricity A = 0,

$$H = -\frac{\mu Z^2 e^4}{\hbar^2} \frac{1}{2n^2}, \qquad n = 1, 2, 3, \dots$$
 (7)

Show that the (classical) analysis of hydrogen atom, that does not accommodate the Heisenberg uncertainty relation, would allow the n=0 energy state, that could be interpreted as a orbit with vanishing radius.