Final Exam (Spring 2018) PHYS 510: Classical Mechanics

Date: 2018 May 11

1. (20 points.) A pendulum consists of a mass m_{2} hanging from a pivot by a massless string of length a. The pivot, in general, has mass m_{1}, but, for simplification let $m_{1}=0$. Let the pivot be constrained to move on a horizontal rod. See Figure 1. For simplification, and at loss of generality, let us chose the motion of the pendulum in a vertical plane containing the rod.

Figure 1: Problem 1.
(a) Determine the Lagrangian for the system to be

$$
\begin{equation*}
L(x, \dot{x}, \theta, \dot{\theta})=\frac{1}{2} m_{2} \dot{x}^{2}+\frac{1}{2} m_{2} a^{2} \dot{\theta}^{2}+m_{2} a \dot{x} \dot{\theta} \cos \theta+m_{2} g a \cos \theta \tag{1}
\end{equation*}
$$

(b) Evaluate the following derivatives and give physical interpretations of each of these.

$$
\begin{align*}
& \frac{\partial L}{\partial \dot{x}}=m_{2} \dot{x}+m_{2} a \dot{\theta} \cos \theta, \tag{2a}\\
& \frac{\partial L}{\partial x}=0 \tag{2b}\\
& \frac{\partial L}{\partial \dot{\theta}}=m_{2} a^{2} \dot{\theta}+m_{2} a \dot{x} \cos \theta, \tag{2c}\\
& \frac{\partial L}{\partial \theta}=-m_{2} a \dot{x} \dot{\theta} \sin \theta-m_{2} g a \sin \theta . \tag{2d}
\end{align*}
$$

(c) Determine the equations of motion for the system. Express them in the form

$$
\begin{array}{r}
\ddot{x}+a \ddot{\theta} \cos \theta-a \dot{\theta}^{2} \sin \theta=0 \\
a \ddot{\theta}+\ddot{x} \cos \theta+g \sin \theta=0 \tag{3b}
\end{array}
$$

Observe that, like in the case of simple pendulum, the motion is independent of the mass m_{2} when $m_{1}=0$.
(d) In the small angle approximation show that the equations of motion reduce to

$$
\begin{array}{r}
\ddot{x}+a \ddot{\theta}=0, \\
a \ddot{\theta}+\ddot{x}+g \theta=0 . \tag{4b}
\end{array}
$$

Determine the solution to be given by

$$
\begin{equation*}
\theta=0 \quad \text { and } \quad \ddot{x}=0 . \tag{5}
\end{equation*}
$$

Interpret this solution.
(e) The solution $\theta=0$ seems to be too restrictive. Will this system not allow $\theta \neq 0$? To investigate this, let us not restrict to the small angle approximation. Rewrite Eqs. (3), using Eq. (3a) in Eq. (3b), as

$$
\begin{align*}
\ddot{x}+a \ddot{\theta} \cos \theta-a \dot{\theta}^{2} \sin \theta & =0 \tag{6a}\\
\sin \theta\left[a \ddot{\theta} \sin \theta+a \dot{\theta}^{2} \cos \theta+g\right] & =0 \tag{6b}
\end{align*}
$$

In this form we immediately observe that $\theta=0$ is a solution. However, it is not the only solution. Towards interpretting Eqs. (6) let us identify the coordinates of the center of mass of the $m_{1}-m_{2}$ system,

$$
\begin{align*}
\left(m_{1}+m_{2}\right) x_{\mathrm{cm}} & =m_{1} x+m_{2}(x+a \sin \theta) \tag{7a}\\
\left(m_{1}+m_{2}\right) y_{\mathrm{cm}} & =-m_{2} a \cos \theta \tag{7b}
\end{align*}
$$

which for $m_{1}=0$ are the coordinates of the mass m_{2},

$$
\begin{align*}
x_{\mathrm{cm}} & =x+a \sin \theta \tag{8a}\\
y_{\mathrm{cm}} & =-a \cos \theta \tag{8b}
\end{align*}
$$

Show that

$$
\begin{align*}
\dot{x}_{\mathrm{cm}} & =\dot{x}+a \dot{\theta} \cos \theta \tag{9a}\\
\dot{y}_{\mathrm{cm}} & =a \dot{\theta} \sin \theta \tag{9b}
\end{align*}
$$

and

$$
\begin{align*}
\ddot{x}_{\mathrm{cm}} & =\ddot{x}+a \ddot{\theta} \cos \theta-a \dot{\theta}^{2} \sin \theta \tag{10a}\\
\ddot{y}_{\mathrm{cm}} & =a \ddot{\theta} \sin \theta+a \dot{\theta}^{2} \cos \theta \tag{10b}
\end{align*}
$$

Comparing Eqs. (6) and Eqs. (10) we learn that

$$
\begin{align*}
\ddot{x}_{\mathrm{cm}} & =0 \tag{11a}\\
\sin \theta\left[\ddot{y}_{\mathrm{cm}}+g\right] & =0 \tag{11b}
\end{align*}
$$

Thus, $\ddot{y}_{\mathrm{cm}}=-g$ is the more general solution, and $\theta=0$ is a trivial solution.
(f) Let us analyse the system for initial conditions: $\theta(0)=\theta_{0}, \dot{\theta}(0)=0, \dot{x}(0)=0$. Show that for this case $\dot{x}_{\mathrm{cm}}(0)=0$ and

$$
\begin{equation*}
a\left(\cos \theta-\cos \theta_{0}\right)=\frac{1}{2} g t^{2} \tag{12}
\end{equation*}
$$

Plot θ as a function of time t. Interpret this solution.
2. (20 points.) The path of a relativistic particle moving along a straight line with constant (proper) acceleration α is described by the equation of a hyperbola

$$
\begin{equation*}
x^{2}-c^{2} t^{2}=x_{0}^{2}, \quad x_{0}=\frac{c^{2}}{\alpha} \tag{13}
\end{equation*}
$$

This is the motion of a particle 'dropped' from $x=x_{0}$ at $t=0$ in region of constant (proper) acceleration.
(a) Will a photon dispatched to 'chase' this particle at $t=0$ from $x=0$ ever catch up with it? If yes, when and where does it catch up?
(b) Will a photon dispatched to 'chase' this particle at $t=0$ from $0<x<x_{0}$ ever catch up with it? If yes, when and where does it catch up?
(c) Will a photon dispatched to 'chase' this particle, at $t=0$ from $x<0$ ever catch up with it? If yes, when and where does it catch up?

