
Midterm Exam No. 01 (Spring 2018)

PHYS 510: Classical Mechanics

Date: 2018 Feb 27

1. (20 points.) Given the functional
F [u] = (1)

Evaluate the functional derivative
δF [u]

δu(x)
. (2)

2. (20 points.) This question will be on finding the geodesic on a given surface, or to find
the path of light in a medium of given refractive index.

3. (20 points.) A pendulum consists of a mass m2 hanging from a pivot by a massless string
of length a. The pivot, in general, has mass m1, but, for simplification let m1 = 0. Let
the pivot be constrained to move on a horizontal rod. See Figure 3. For simplification,
and at loss of generality, let us chose the motion of the pendulum in a vertical plane
containing the rod.
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Figure 1: Problem 3.

(a) Determine the Lagrangian for the system to be

L(x, ẋ, θ, θ̇) =
1

2
m2ẋ

2 +
1

2
m2a

2θ̇2 +m2aẋθ̇ cos θ +m2ga cos θ. (3)

(b) Evaluate the following derivatives and give physical interpretations of each of these.

∂L

∂ẋ
= m2ẋ+m2aθ̇ cos θ,

∂L

∂θ̇
= m2a

2θ̇ +m2aẋ cos θ, (4a)

∂L

∂x
= 0,

∂L

∂θ
= −m2aẋθ̇ sin θ −m2ga sin θ. (4b)
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(c) Determine the equations of motion for the system. Express them in the form

ẍ+ aθ̈ cos θ − aθ̇2 sin θ = 0, (5a)

aθ̈ + ẍ cos θ + g sin θ = 0. (5b)

Observe that, like in the case of simple pendulum, the motion is independent of the
mass m2 when m1 = 0.

(d) Determine the solution in the small angle approximation. Analyse it. Interpret your
solution.

4. (20 points.) A pendulum consists of a mass m2 hanging from a pivot by a massless
string of length a2. The pivot, in general, has mass m1, but, for simplification let m1 = 0.
Let the pivot be constrained to move on a frictionless hoop of radius a1. See Figure 4.
For simplification, and at loss of generality, let us chose the motion of the pendulum in
the plane containing the hoop.
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Figure 2: Problem 4.

(a) Determine the Lagrangian for the system to be

L(θ1, θ̇1, θ2, θ̇2) =
1

2
m2a

2

1
θ̇2
1
+

1

2
m2a

2

2
θ̇2
2
+m2a1a2θ̇1θ̇2 cos(θ1 − θ2)

+m2ga1 cos θ1 +m2ga2 cos θ2. (6)

(b) Evaluate the following derivatives and give physical interpretations of each of these.

∂L

∂θ̇1
= m2a

2

1
θ̇1 +m2a1a2θ̇2 cos(θ1 − θ2), (7a)

∂L

∂θ1
= −m2a1a2θ̇1θ̇2 sin(θ1 − θ2)−m2ga1 sin θ1, (7b)

∂L

∂θ̇2
= m2a

2

2
θ̇2 +m2a1a2θ̇1 cos(θ1 − θ2), (7c)

∂L

∂θ2
= m2a1a2θ̇1θ̇2 sin(θ1 − θ2)−m2ga2 sin θ2. (7d)
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(c) Determine the equations of motion for the system. Express them in the form

θ̈1 + ω2

1
sin θ1 +

1

β
θ̈2 cos(θ1 − θ2) +

1

β
θ̇2
2
sin(θ1 − θ2) = 0, (8a)

θ̈2 + ω2

2
sin θ2 + βθ̈1 cos(θ1 − θ2)− βθ̇2

1
sin(θ1 − θ2) = 0, (8b)

where

ω2

1
=

g

a1
, ω2

2
=

g

a2
, β =

a1

a2
=

ω2

2

ω2

1

. (9)

Note that β is not an independent parameter. Also, observe that, like in the case of
simple pendulum, the motion is independent of the mass m2 when m1 = 0.

(d) In the small angle approximation show that the equations of motion reduce to

θ̈1 + ω2

1
θ1 +

1

β
θ̈2 = 0, (10a)

θ̈2 + ω2

2
θ2 + βθ̈1 = 0. (10b)

(e) Determine the solution for the initial conditions

θ1(0) = 0, θ2(0) = θ20, θ̇1(0) = 0, θ̇2(0) = 0. (11)

Interpret and expound your solution.
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