Midterm Exam No. 01 (Spring 2018) PHYS 510: Classical Mechanics

Date: 2018 Feb 27

1. (20 points.) Given the functional

$$
\begin{equation*}
F[u]=\int_{x_{1}}^{x_{2}} d x x u(x) \frac{d u(x)}{d x} . \tag{1}
\end{equation*}
$$

Assuming no variations at the end points, evaluate the functional derivative

$$
\begin{equation*}
\frac{\delta F[u]}{\delta u(x)} \tag{2}
\end{equation*}
$$

2. ($\mathbf{2 0}$ points.) Find the geodesics on the surface of a circular cylinder. Identify these curves. Hint: To have a visual perception of these geodesics it helps to note that a cylinder can be mapped (or cut open) into a plane.
(a) The distance between two points on the surface of a cylinder of radius a is characterized by the infinitesimal statement

$$
\begin{equation*}
d s^{2}=a^{2} d \phi^{2}+d z^{2} \tag{3}
\end{equation*}
$$

(b) The geodesic is the extremal of the functional

$$
\begin{equation*}
l[z]=\int_{\left(\phi_{1}, z_{1}\right)}^{\left(\phi_{2}, z_{2}\right)} d s=\int_{\phi_{1}}^{\phi_{2}} a d \phi \sqrt{1+\left(\frac{1}{a} \frac{d z}{d \phi}\right)^{2}} \tag{4}
\end{equation*}
$$

(c) Since the curve passes through the points $\left(z_{1}, \phi_{1}\right)$ and $\left(z_{2}, \phi_{2}\right)$ we have no variations on the end points. Thus, show that

$$
\begin{equation*}
\frac{1}{a} \frac{\delta l[z]}{\delta z(\phi)}=-\frac{d}{d \phi}\left[\frac{\frac{d z}{d \phi}}{\sqrt{1+\left(\frac{d z}{d \phi}\right)^{2}}}\right] \tag{5}
\end{equation*}
$$

(d) Using the extremum principle show that the differential equation for the geodesic is

$$
\begin{equation*}
\frac{1}{a} \frac{d z}{d \phi}=c \tag{6}
\end{equation*}
$$

where c is a contant.
(e) Solve the differential equation. Identify the curves described by the solutions. Illustrate a particular curve using a diagram.
3. (20 points.) A pendulum consists of a mass m_{2} hanging from a pivot by a massless string of length a. The pivot, in general, has mass m_{1}, but, for simplification let $m_{1}=0$. Let the pivot be constrained to move on a horizontal rod. See Figure 3. For simplification, and at loss of generality, let us chose the motion of the pendulum in a vertical plane containing the rod.

Figure 1: Problem 3.
(a) Determine the Lagrangian for the system to be

$$
\begin{equation*}
L(x, \dot{x}, \theta, \dot{\theta})=\frac{1}{2} m_{2} \dot{x}^{2}+\frac{1}{2} m_{2} a^{2} \dot{\theta}^{2}+m_{2} a \dot{x} \dot{\theta} \cos \theta+m_{2} g a \cos \theta \tag{7}
\end{equation*}
$$

(b) Evaluate the following derivatives and give physical interpretations of each of these.

$$
\begin{array}{ll}
\frac{\partial L}{\partial \dot{x}}=m_{2} \dot{x}+m_{2} a \dot{\theta} \cos \theta, & \frac{\partial L}{\partial \dot{\theta}}=m_{2} a^{2} \dot{\theta}+m_{2} a \dot{x} \cos \theta \\
\frac{\partial L}{\partial x}=0, & \frac{\partial L}{\partial \theta}=-m_{2} a \dot{x} \dot{\theta} \sin \theta-m_{2} g a \sin \theta . \tag{8b}
\end{array}
$$

(c) Determine the equations of motion for the system. Express them in the form

$$
\begin{array}{r}
\ddot{x}+a \ddot{\theta} \cos \theta-a \dot{\theta}^{2} \sin \theta=0 \\
a \ddot{\theta}+\ddot{x} \cos \theta+g \sin \theta=0 . \tag{9b}
\end{array}
$$

Observe that, like in the case of simple pendulum, the motion is independent of the mass m_{2} when $m_{1}=0$.
(d) Determine the solution in the small angle approximation. Analyse it. Interpret your solution.
4. (20 points.) A pendulum consists of a mass m_{2} hanging from a pivot by a massless string of length a_{2}. The pivot, in general, has mass m_{1}, but, for simplification let $m_{1}=0$. Let the pivot be constrained to move on a frictionless hoop of radius a_{1}. See Figure 4. For simplification, and at loss of generality, let us chose the motion of the pendulum in the plane containing the hoop.

Figure 2: Problem 4.
(a) Determine the Lagrangian for the system to be

$$
\begin{align*}
L\left(\theta_{1}, \dot{\theta}_{1}, \theta_{2}, \dot{\theta}_{2}\right)= & \frac{1}{2} m_{2} a_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} a_{2}^{2} \dot{\theta}_{2}^{2}+m_{2} a_{1} a_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right) \\
& +m_{2} g a_{1} \cos \theta_{1}+m_{2} g a_{2} \cos \theta_{2} . \tag{10}
\end{align*}
$$

(b) Evaluate the following derivatives and give physical interpretations of each of these.

$$
\begin{align*}
& \frac{\partial L}{\partial \dot{\theta}_{1}}=m_{2} a_{1}^{2} \dot{\theta}_{1}+m_{2} a_{1} a_{2} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right), \tag{11a}\\
& \frac{\partial L}{\partial \theta_{1}}=-m_{2} a_{1} a_{2} \dot{\theta}_{1} \dot{\theta}_{2} \sin \left(\theta_{1}-\theta_{2}\right)-m_{2} g a_{1} \sin \theta_{1}, \tag{11b}\\
& \frac{\partial L}{\partial \dot{\theta}_{2}}=m_{2} a_{2}^{2} \dot{\theta}_{2}+m_{2} a_{1} a_{2} \dot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right) \tag{11c}\\
& \frac{\partial L}{\partial \theta_{2}}=m_{2} a_{1} a_{2} \dot{\theta}_{1} \dot{\theta}_{2} \sin \left(\theta_{1}-\theta_{2}\right)-m_{2} g a_{2} \sin \theta_{2} \tag{11d}
\end{align*}
$$

(c) Determine the equations of motion for the system. Express them in the form

$$
\begin{align*}
\ddot{\theta}_{1}+\omega_{1}^{2} \sin \theta_{1}+\frac{1}{\beta} \ddot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)+\frac{1}{\beta} \dot{\theta}_{2}^{2} \sin \left(\theta_{1}-\theta_{2}\right) & =0, \tag{12a}\\
\ddot{\theta}_{2}+\omega_{2}^{2} \sin \theta_{2}+\beta \ddot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right)-\beta \dot{\theta}_{1}^{2} \sin \left(\theta_{1}-\theta_{2}\right) & =0, \tag{12b}
\end{align*}
$$

where

$$
\begin{equation*}
\omega_{1}^{2}=\frac{g}{a_{1}}, \quad \omega_{2}^{2}=\frac{g}{a_{2}}, \quad \beta=\frac{a_{1}}{a_{2}}=\frac{\omega_{2}^{2}}{\omega_{1}^{2}} . \tag{13}
\end{equation*}
$$

Note that β is not an independent parameter. Also, observe that, like in the case of simple pendulum, the motion is independent of the mass m_{2} when $m_{1}=0$.
(d) In the small angle approximation show that the equations of motion reduce to

$$
\begin{align*}
& \ddot{\theta}_{1}+\omega_{1}^{2} \theta_{1}+\frac{1}{\beta} \ddot{\theta}_{2}=0 \tag{14a}\\
& \ddot{\theta}_{2}+\omega_{2}^{2} \theta_{2}+\beta \ddot{\theta}_{1}=0 . \tag{14b}
\end{align*}
$$

(e) Determine the solution for the initial conditions

$$
\begin{equation*}
\theta_{1}(0)=0, \quad \theta_{2}(0)=\theta_{20}, \quad \dot{\theta}_{1}(0)=0, \quad \dot{\theta}_{2}(0)=0 . \tag{15}
\end{equation*}
$$

Interpret and expound your solution.

