Homework No. 02 (Spring 2018) PHYS 510: Classical Mechanics

Due date: Tuesday, 2018 Feb 6, 4.30pm

1. (20 points.) (Refer Goldstein, 2nd edition, Chapter 2 Problem 2.) Show that the geodesics on a spherical surface are great circles, that is, circles whose centers lie at the center of the sphere.
(a) The distance between two points on the surface of a sphere of radius a is characterized by the infinitesimal statement

$$
\begin{equation*}
d s^{2}=a^{2} d \theta^{2}+a^{2} \sin ^{2} \theta d \phi^{2} \tag{1}
\end{equation*}
$$

(b) The geodesic is the extremal of the functional

$$
\begin{equation*}
l[y]=\int_{\left(\theta_{1}, \phi_{1}\right)}^{\left(\theta_{2}, \phi_{2}\right)} d s=\int_{\left(\theta_{1}, \phi_{1}\right)}^{\left(\theta_{2}, \phi_{2}\right)} d \theta \sqrt{1+\left(\frac{d \phi}{d \theta}\right)^{2}} \tag{2}
\end{equation*}
$$

(c) Since the curve passes through the points $\left(\theta_{1}, \phi_{1}\right)$ and $\left(\theta_{2}, \phi_{2}\right)$ we have no variations on the end points. Thus, show that

$$
\begin{equation*}
\frac{1}{r} \frac{\delta l[y]}{\delta \phi(\theta)}=-\frac{d}{d \theta}\left[\frac{\sin ^{2} \theta \frac{d \phi}{d \theta}}{\sqrt{1+\sin ^{2} \theta\left(\frac{d \phi}{d \theta}\right)^{2}}}\right] \tag{3}
\end{equation*}
$$

(d) Using the extremum principle show that the differential equation for the geodesic is

$$
\begin{equation*}
\frac{d \phi}{d \theta}=\frac{c}{\sin \theta \sqrt{\sin ^{2} \theta-c^{2}}} \tag{4}
\end{equation*}
$$

where c is an arbitrary constant.
(e) Solve the differential equation to obtain the equation of geodesic as

$$
\begin{equation*}
\sin \left(\phi_{0}-\phi\right)=\bar{c} \cot \theta \tag{5}
\end{equation*}
$$

where $\bar{c}=c / \sqrt{1-c^{2}}$ and ϕ_{0} is a constant of integration.
(f) Rewrite the equation of the geodesic in the form

$$
\begin{equation*}
-\sin \phi_{0} \sin \theta \cos \phi+\cos \phi_{0} \sin \theta \sin \phi+\bar{c} \cos \theta=0 \tag{6}
\end{equation*}
$$

Interpret this to be an equation of plane passing through the origin. The condition that this plane has to pass through the two given points determines the constants \bar{c} and ϕ_{0}, which we shall not attempt here.

