Homework No. 06 (Spring 2018) PHYS 510: Classical Mechanics

Due date: Tuesday, 2018 Mar 27, 4.30pm

1. (50 points.) (Refer Landau and Lifshitz, Problem 1 in Chapter 3.)

A simple pendulum, consisting of a particle of mass m suspended by a string of length l in a uniform gravitational field g, is described by the Hamiltonian

$$
\begin{equation*}
H=\frac{1}{2} m l^{2} \dot{\phi}^{2}-m g l \cos \phi . \tag{1}
\end{equation*}
$$

(a) For initial conditions $\phi(0)=\phi_{0}$ and $\dot{\phi}(0)=0$ show that

$$
\begin{equation*}
\frac{1}{2} m l^{2} \dot{\phi}^{2}-m g l \cos \phi=-m g l \cos \phi_{0} \tag{2}
\end{equation*}
$$

Thus, derive

$$
\begin{equation*}
\frac{d t}{T_{0}}=\frac{1}{2 \pi} \frac{d \phi}{\sqrt{2\left(\cos \phi-\cos \phi_{0}\right)}} \tag{3}
\end{equation*}
$$

where $T_{0}=2 \pi \sqrt{l / g}$.
(b) Determine the period of oscillations of the simple pendulum as a function of the amplitude of oscillations ϕ_{0} to be

$$
\begin{equation*}
T=T_{0} \frac{2}{\pi} K\left(\sin \frac{\phi_{0}}{2}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
K(k)=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}} \tag{5}
\end{equation*}
$$

is the complete elliptic integral of the first kind.
(c) Using the power series expansion

$$
\begin{equation*}
K(k)=\frac{\pi}{2} \sum_{n=0}^{\infty}\left[\frac{(2 n)!}{2^{2 n}(n!)^{2}}\right]^{2} k^{2 n} \tag{6}
\end{equation*}
$$

show that for small oscillations $\left(\phi_{0} / 2 \ll 1\right)$

$$
\begin{equation*}
T=T_{0}\left[1+\frac{\phi_{0}^{2}}{16}+\ldots\right] . \tag{7}
\end{equation*}
$$

(d) Estimate the percentage error made in the approximation $T \sim T_{0}$ for $\phi_{0} \sim 60^{\circ}$.
(e) Plot the time period T of Eq. (4) as a function of ϕ_{0}. What can you conclude about the time period for $\phi_{0}=\pi$?
2. (20 points.) Starting from the Lagrangian for the Kepler problem,

$$
\begin{equation*}
L(\mathbf{r}, \mathbf{v})=\frac{1}{2} \mu v^{2}+\frac{\alpha}{r}, \tag{8}
\end{equation*}
$$

derive Kepler's first law of planetary motion, which states that the orbit of a planet is a conic section. In particular, derive

$$
\begin{equation*}
r(\phi)=\frac{r_{0}}{1+e \cos \left(\phi-\phi_{0}\right)}, \tag{9}
\end{equation*}
$$

which is the equation of a conic section in terms of the eccentricity e and the distance r_{0} when the effective potential

$$
\begin{equation*}
U_{\mathrm{eff}}(r)=\frac{L_{z}^{2}}{2 \mu r^{2}}-\frac{\alpha}{r} \tag{10}
\end{equation*}
$$

is minimum. We used the definitions, $L_{z}=\mu r^{2} \dot{\phi}$,

$$
\begin{equation*}
r_{0}=\frac{L_{z}^{2}}{\mu \alpha}, \quad U_{\mathrm{eff}}\left(r_{0}\right)=-\frac{\alpha}{2 r_{0}}, \quad e=\sqrt{1+\frac{E}{U_{\mathrm{eff}}\left(r_{0}\right)}} . \tag{11}
\end{equation*}
$$

Thus, the orbit of a planet is completely determined by the energy E and the angular momentum L_{z}, which are constants of motion.

