Homework No. 07 (Spring 2018) PHYS 510: Classical Mechanics

Due date: Thursday, 2018 Apr 12, 4.30pm

1. (20 points.) Lorentz transformation (in one dimension) is given by

$$
\begin{align*}
\Delta z^{\prime} & =\gamma(\Delta z-v \Delta t) \tag{1a}\\
\Delta t^{\prime} & =\gamma\left(\Delta t-\frac{v}{c} \frac{\Delta z}{c}\right) \tag{1b}
\end{align*}
$$

where $\gamma=\sqrt{1-v^{2} / c^{2}}$. Show that for

$$
\begin{equation*}
v \ll c \quad \text { and } \quad \frac{\Delta z}{\Delta t} \ll c \tag{2}
\end{equation*}
$$

one obtains the Galilean transformation

$$
\begin{align*}
\Delta z^{\prime} & =\Delta z-v \Delta t \tag{3a}\\
\Delta t^{\prime} & =\Delta t \tag{3b}
\end{align*}
$$

Note: For the case when Δz and Δt represent the change in position and time of a particle we could have v and $\Delta z / \Delta t$ to be identical.
2. (60 points.) The Poincaré formula for the addition of (parallel) velocities is

$$
\begin{equation*}
v=\frac{v_{a}+v_{b}}{1+\frac{v_{a} v_{b}}{c^{2}}} \tag{4}
\end{equation*}
$$

where v_{a} and v_{b} are velocities and c is speed of light in vacuum. Jerzy Kocik, from the department of Mathematics in SIUC, has invented a geometric diagram that allows one to visualize the Poincaré formula. (Refer [1].) An interactive applet for exploring velocity addition is available at Kocik's web page [2]. (For the following assume that the Poincaré formula holds for all speeds, subluminal $\left(v_{i}<c\right)$, superluminal $\left(v_{i}>c\right)$, and speed of light.)
(a) Analyse what is obtained if you add two subluminal speeds?
(b) Analyse what is obtained if you add a subluminal speed to speed of light?
(c) Analyse what is obtained if you add a subluminal speed to a superluminal speed?
(d) Analyse what is obtained if you add speed of light to another speed of light?
(e) Analyse what is obtained if you add a superluminal speed to speed of light?
(f) Analyse what is obtained if you add two superluminal speeds?

References

[1] J. Kocik. Geometric diagram for relativistic addition of velocities. Am. J. Phys., 80:737-739, August 2012.
[2] J. Kocik. An interactive applet for exploring relativistic velocity addition. http://lagrange.math.siu.edu/Kocik/relativity/diagram.html.

