Homework No. 08 (Spring 2018) PHYS 510: Classical Mechanics

Due date: Thursday, 2018 Apr 26, 4.30pm

1. ($\mathbf{1 0 0}$ points.) Relativisitic kinematics is constructed in terms of the proper time element $d s$, which remains unchanged under a Lorentz transformation,

$$
\begin{equation*}
-d s^{2}=-c^{2} d t^{2}+d \mathbf{x} \cdot d \mathbf{x} \tag{1}
\end{equation*}
$$

Here \mathbf{x} and t are the position and time of a particle. They are components of a vector under Lorentz transformation and together constitute the position four-vector

$$
\begin{equation*}
x^{\alpha}=(c t, \mathbf{x}) . \tag{2}
\end{equation*}
$$

(a) Velocity: The four-vector associated with velocity is constructed as

$$
\begin{equation*}
u^{\alpha}=c \frac{d x^{\alpha}}{d s} \tag{3}
\end{equation*}
$$

i. Using Eq. (1) deduce

$$
\begin{equation*}
\gamma d s=c d t, \quad \text { where } \quad \gamma=\frac{1}{\sqrt{1-\beta^{2}}}, \quad \boldsymbol{\beta}=\frac{\mathbf{v}}{c} . \tag{4}
\end{equation*}
$$

Then, show that

$$
\begin{equation*}
u^{\alpha}=(c \gamma, \mathbf{v} \gamma) \tag{5}
\end{equation*}
$$

ii. Further, show that

$$
\begin{equation*}
u^{\alpha} u_{\alpha}=-c^{2} \tag{6}
\end{equation*}
$$

Thus, conclude that the velocity four-vector is a time-like vector. What is the physical implication of this for a particle?
iii. Write down the form of the velocity four-vector in the rest frame of the particle?
(b) Momentum: Define momentum four-vector in terms of the mass m of the particle as

$$
\begin{equation*}
p^{\alpha}=m u^{\alpha}=(m c \gamma, m \mathbf{v} \gamma) \tag{7}
\end{equation*}
$$

Connection with the physical quantities associated to a moving particle, the energy and momentum of the particle, is made by identifying (or defining)

$$
\begin{equation*}
p^{\alpha}=\left(\frac{E}{c}, \mathbf{p}\right) \tag{8}
\end{equation*}
$$

which corresponds to the definitions

$$
\begin{align*}
E & =m c^{2} \gamma \tag{9a}\\
\mathbf{p} & =m \mathbf{v} \gamma \tag{9b}
\end{align*}
$$

Discuss the non-relativistic limits of these quantities. Evaluate

$$
\begin{equation*}
p^{\alpha} p_{\alpha}=-m^{2} c^{2} \tag{10}
\end{equation*}
$$

Thus, derive the energy-momentum relation

$$
\begin{equation*}
E^{2}-p^{2} c^{2}=m^{2} c^{4} \tag{11}
\end{equation*}
$$

(c) Acceleration: The four-vector associated with acceleration is constructed as

$$
\begin{equation*}
a^{\alpha}=c \frac{d u^{\alpha}}{d s} \tag{12}
\end{equation*}
$$

i. Show that

$$
\begin{equation*}
a^{\alpha}=\gamma\left(c \frac{d \gamma}{d t}, \mathbf{v} \frac{d \gamma}{d t}+\gamma \mathbf{a}\right) \tag{13}
\end{equation*}
$$

ii. Starting from Eq. (6) and taking derivative with respect to proper time show that

$$
\begin{equation*}
u^{\alpha} a_{\alpha}=0 \tag{14}
\end{equation*}
$$

Thus, conclude that that four-acceleration is space-like.
iii. Further, using the explicit form of $u^{\alpha} a_{\alpha}$ in Eq. (14) derive the identity

$$
\begin{equation*}
\frac{d \gamma}{d t}=\left(\frac{\mathbf{v} \cdot \mathbf{a}}{c^{2}}\right) \gamma^{2} \tag{15}
\end{equation*}
$$

iv. Show that

$$
\begin{equation*}
a^{\alpha}=\left(\frac{\mathbf{v} \cdot \mathbf{a}}{c} \gamma^{4}, \mathbf{a} \gamma^{2}+\frac{\mathbf{v}}{c} \frac{\mathbf{v} \cdot \mathbf{a}}{c} \gamma^{4}\right) \tag{16}
\end{equation*}
$$

v . Write down the form of the acceleration four-vector in the rest frame $(\mathbf{v}=0)$ of the particle as $\left(0, \mathbf{a}_{0}\right)$, where \mathbf{a}_{0} is defined as the proper acceleration.
vi. Evaluate the following identities

$$
\begin{equation*}
a^{\alpha} a_{\alpha}=\mathbf{a}_{0} \cdot \mathbf{a}_{0}=\left[\mathbf{a} \cdot \mathbf{a}+\left(\frac{\mathbf{v} \cdot \mathbf{a}}{c}\right)^{2} \gamma^{2}\right] \gamma^{4}=\left[\mathbf{a} \cdot \mathbf{a}-\left(\frac{\mathbf{v} \times \mathbf{a}}{c}\right)^{2}\right] \gamma^{6} . \tag{17}
\end{equation*}
$$

vii. In a particular frame, if $\mathbf{v} \| \mathbf{a}$ (corresponding to linear motion), deduce

$$
\begin{equation*}
\left|\mathbf{a}_{0}\right|=|\mathbf{a}| \gamma^{3} . \tag{18}
\end{equation*}
$$

And, in a particular frame, if $\mathbf{v} \perp \mathbf{a}$ (corresponding to circular motion), deduce

$$
\begin{equation*}
\left|\mathbf{a}_{0}\right|=|\mathbf{a}| \gamma^{2} \tag{19}
\end{equation*}
$$

(d) Force: The force four-vector is defined as

$$
\begin{equation*}
f^{\alpha}=c \frac{d p^{\alpha}}{d s}=\left(\frac{\gamma}{c} \frac{d E}{d t}, \mathbf{F} \gamma\right) \tag{20}
\end{equation*}
$$

where the force \mathbf{F} is identified (or defined) as

$$
\begin{equation*}
\mathbf{F}=\frac{d \mathbf{p}}{d t} \tag{21}
\end{equation*}
$$

Starting from Eq. (10) derive the relation

$$
\begin{equation*}
\frac{d E}{d t}=\mathbf{F} \cdot \mathbf{v} \tag{22}
\end{equation*}
$$

(e) Equations of motion: The relativistic generalization of Newton's laws are

$$
\begin{equation*}
f^{\alpha}=m a^{\alpha} . \tag{23}
\end{equation*}
$$

Show that these involve the relations

$$
\begin{align*}
\mathbf{F} & =m \mathbf{a} \gamma+m \mathbf{v} \frac{\mathbf{v} \cdot \mathbf{a}}{c^{2}} \gamma^{3} \tag{24}\\
\frac{d E}{d t} & =\mathbf{F} \cdot \mathbf{v}=m \mathbf{v} \cdot \mathbf{a} \gamma^{3} \tag{25}
\end{align*}
$$

2. Lorentz transformation relates the energy of momentum of a particle when measured in different frames. For example, for the special case when the relative velocity and the velocity of the particle are parallel we have

$$
\binom{E^{\prime} / c}{p^{\prime}}=\left(\begin{array}{cc}
\gamma & \beta \gamma \tag{26}\\
\beta \gamma & \gamma
\end{array}\right)\binom{E / c}{p}
$$

Photons are massless spin 1 particles whose energy and momentum are $E=\hbar \omega$ and $\mathbf{p}=\hbar \mathbf{k}$, such that $\omega=k c$. Thus, derive the relativistic Doppler effect formula

$$
\begin{equation*}
\omega^{\prime}=\omega \sqrt{\frac{1+\beta}{1-\beta}} \tag{27}
\end{equation*}
$$

