Homework No. 09 (Spring 2018) PHYS 510: Classical Mechanics

Due date: Thursday, 2018 May 3, 4.30pm

1. (20 points.) The path of a relativistic particle moving along a straight line with constant (proper) acceleration α is described by the equation of a hyperbola

$$
\begin{equation*}
x^{2}-c^{2} t^{2}=x_{0}^{2}, \quad x_{0}=\frac{c^{2}}{\alpha} \tag{1}
\end{equation*}
$$

This is the motion of a particle 'dropped' from $x=x_{0}$ at $t=0$ in region of constant (proper) acceleration.
(a) Will a photon dispatched to 'chase' this particle at $t=0$ from $x=0$ ever catch up with it? If yes, when and where does it catch up?
(b) Will a photon dispatched to 'chase' this particle at $t=0$ from $0<x<x_{0}$ ever catch up with it? If yes, when and where does it catch up?
(c) Will a photon dispatched to 'chase' this particle, at $t=0$ from $x<0$ ever catch up with it? If yes, when and where does it catch up?

What are the implications for the observable part of our universe from this analysis?

