Homework No. 02 (Fall 2018)

PHYS 500A: Mathematical Methods

Due date: Tuesday, 2018 Sep 4, 4.00pm

1. (**80** points.)

(a) A vector \mathbf{v} in terms of the basis vectors \mathbf{e}_i has the form

$$\mathbf{v} = \mathbf{e}_i v^i, \tag{1}$$

and in terms of another set of basis vectors $\bar{\mathbf{e}}_i$ has the form

$$\mathbf{v} = \bar{\mathbf{e}}_i \bar{v}^i. \tag{2}$$

If the two sets of basis vectors are related by the linear transformation

$$\bar{\mathbf{e}}_i = \mathbf{e}_i a^j_{\ i},\tag{3}$$

then show that

$$\bar{v}^i = b^i{}_i v^j, \tag{4}$$

where $b = a^{-1}$.

(b) Spherical polar coordinates are defined using the transformations

$$x = r\sin\theta\cos\phi, \qquad \qquad r = \sqrt{x^2 + y^2 + z^2}, \tag{5a}$$

$$y = r \sin \theta \cos \phi, \qquad r = \sqrt{x^2 + y^2}, \qquad (5a)$$

$$y = r \sin \theta \sin \phi, \qquad \theta = \tan^{-1} \sqrt{\frac{x^2 + y^2}{z^2}}, \qquad (5b)$$

$$z = r \cos \theta, \qquad \phi = \tan^{-1} \frac{y}{r}. \qquad (5c)$$

$$z = r \cos \theta,$$
 $\phi = \tan^{-1} \frac{y}{x}.$ (5c)

Let us chose

$$\mathbf{e}_1 = \hat{\mathbf{i}}, \quad \mathbf{e}_2 = \hat{\mathbf{j}}, \quad \mathbf{e}_3 = \hat{\mathbf{k}}, \tag{6}$$

and

$$\bar{\mathbf{e}}_1 = \mathbf{r} = \boldsymbol{\nabla}r, \quad \bar{\mathbf{e}}_2 = \boldsymbol{\theta} = \boldsymbol{\nabla}\theta, \quad \bar{\mathbf{e}}_3 = \boldsymbol{\phi} = \boldsymbol{\nabla}\phi.$$
 (7)

Show that the linear transformation a connecting the two sets of basis vectors is

$$a = \begin{bmatrix} \sin \theta \cos \phi & \frac{\cos \theta \cos \phi}{r} & -\frac{\sin \phi}{r \sin \theta} \\ \sin \theta \sin \phi & \frac{\cos \theta \sin \phi}{r} & \frac{\cos \phi}{r \sin \theta} \\ \cos \theta & -\frac{\sin \theta}{r} & 0 \end{bmatrix}$$
(8)

and

$$b = a^{-1} = \begin{bmatrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ r \cos \theta \cos \phi & r \cos \theta \sin \phi & -r \sin \theta \\ -r \sin \theta \sin \phi & r \sin \theta \cos \phi & 0 \end{bmatrix}. \tag{9}$$

(c) The differential of a position vector in these basis set takes the form

$$d\mathbf{x} = \hat{\mathbf{i}}dx + \hat{\mathbf{j}}dy + \hat{\mathbf{k}}dz = \mathbf{r}d\bar{x} + \boldsymbol{\theta}d\bar{y} + \boldsymbol{\phi}d\bar{z}.$$
 (10)

Using Eq. (3) we learn that

$$\mathbf{r} = \hat{\mathbf{r}}, \quad \boldsymbol{\theta} = \frac{\hat{\boldsymbol{\theta}}}{r}, \quad \boldsymbol{\phi} = \frac{\hat{\boldsymbol{\phi}}}{r\sin\theta},$$
 (11)

where

$$\hat{\mathbf{r}} = \sin \theta \cos \phi \,\hat{\mathbf{i}} + \sin \theta \sin \phi \,\hat{\mathbf{j}} + \cos \theta \,\hat{\mathbf{k}},\tag{12a}$$

$$\hat{\boldsymbol{\theta}} = \cos\theta\cos\phi\,\hat{\mathbf{i}} + \cos\theta\sin\phi\,\hat{\mathbf{j}} - \sin\theta\,\hat{\mathbf{k}},\tag{12b}$$

$$\hat{\boldsymbol{\phi}} = -\sin\phi\,\hat{\mathbf{i}} + \cos\phi\,\hat{\mathbf{j}},\tag{12c}$$

Using Eq. (4) and replacing total differential for the sum of partial differentials we learn that

$$d\bar{x} = \sin\theta\cos\phi \, dx + \sin\theta\sin\phi \, dy + \cos\theta \, dz = dr,\tag{13a}$$

$$d\bar{y} = r\cos\theta\cos\phi\,dx + r\cos\theta\sin\phi\,dy - r\sin\theta\,dz = r^2d\theta,\tag{13b}$$

$$d\bar{z} = -r\sin\theta\sin\phi\,dx + r\sin\theta\cos\phi\,dy = r^2\sin^2\theta\,d\phi. \tag{13c}$$

Thus, show that

$$d\mathbf{x} = \hat{\mathbf{r}} dr + \hat{\boldsymbol{\theta}} r d\theta + \hat{\boldsymbol{\phi}} r \sin \theta d\phi. \tag{14}$$

The scale factors are read out to be

$$h_r = 1, \quad h_\theta = r, \quad h_\phi = r \sin \theta.$$
 (15)

(d) The metric tensor is defined using the inner product,

$$g_{ij} = \mathbf{e}_i \cdot \mathbf{e}_j, \tag{16a}$$

$$\bar{q}_{ij} = \bar{\mathbf{e}}_i \cdot \bar{\mathbf{e}}_j. \tag{16b}$$

Show that

$$g_{ij} = \delta_{ij} \tag{17}$$

and

$$\bar{g}_{ij} = g_{mn} a^m{}_i a^n{}_j = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{r^2} & 0 \\ 0 & 0 & \frac{1}{r^2 \sin^2 \theta} \end{bmatrix}.$$
 (18)

Further, show that

$$d\mathbf{x} \cdot d\mathbf{x} = dx^2 + dy^2 + dz^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2.$$
 (19)