Midterm Exam No. 01 (Spring 2019)

PHYS 510: Classical Mechanics

Date: 2019 Feb 14

1. (20 points.) Given the functional

$$F[u] = \int_{x_1}^{x_2} dx \, x \, u(x) \left(\frac{du}{dx}\right)^2. \tag{1}$$

Assuming no variations at the end points, evaluate the functional derivative

$$\frac{\delta F[u]}{\delta u(x)}. (2)$$

- 2. (20 points.) Find the geodesics on the surface of a right circular cylinder. Identify the curves.
- 3. (20 points.) The motion of a particle of mass m undergoing simple harmonic motion is described by

$$\frac{d}{dt}(mv) = -kx,\tag{3}$$

where v = dx/dt is the velocity in the x direction.

- (a) Find the Lagrangian for this system that implies the equation of motion of Eq. (3).
- (b) Determine the canonical momentum p for this system.
- (c) Determine the Hamilton H(p, x) for this system.
- 4. (20 points.) A relativistic particle of mass m is described by the Lagrangian

$$L(\mathbf{x}, \mathbf{v}) = -mc^2 \sqrt{1 - \frac{v^2}{c^2}},\tag{4}$$

where \mathbf{x} is the position of the particle and and \mathbf{v} is the velocity of the particle.

- (a) Determine the momentum of **p** the relativistic particle.
- (b) Determine the relativistic equation of motion.
- (c) Determine the Hamilton $H(\mathbf{p}, \mathbf{r})$ for the particle.