Midterm Exam No. 01 (Spring 2019) PHYS 510: Classical Mechanics

Date: 2019 Feb 14

1. (20 points.) Given the functional

$$
\begin{equation*}
F[u]=\int_{x_{1}}^{x_{2}} d x x u(x)\left(\frac{d u}{d x}\right)^{2} \tag{1}
\end{equation*}
$$

Assuming no variations at the end points, evaluate the functional derivative

$$
\begin{equation*}
\frac{\delta F[u]}{\delta u(x)} . \tag{2}
\end{equation*}
$$

2. (20 points.) Find the geodesics on the surface of a right circular cylinder. Identify the curves.
3. (20 points.) The motion of a particle of mass m undergoing simple harmonic motion is described by

$$
\begin{equation*}
\frac{d}{d t}(m v)=-k x \tag{3}
\end{equation*}
$$

where $v=d x / d t$ is the velocity in the x direction.
(a) Find the Lagrangian for this system that implies the equation of motion of Eq. (3).
(b) Determine the canonical momentum p for this system.
(c) Determine the Hamilton $H(p, x)$ for this system.
4. (20 points.) A relativistic particle of mass m is described by the Lagrangian

$$
\begin{equation*}
L(\mathbf{x}, \mathbf{v})=-m c^{2} \sqrt{1-\frac{v^{2}}{c^{2}}}, \tag{4}
\end{equation*}
$$

where \mathbf{x} is the position of the particle and and \mathbf{v} is the velocity of the particle.
(a) Determine the momentum of \mathbf{p} the relativistic particle.
(b) Determine the relativistic equation of motion.
(c) Determine the Hamilton $H(\mathbf{p}, \mathbf{r})$ for the particle.

