
(Preview of) Midterm Exam No. 02 (Spring 2019)

PHYS 510: Classical Mechanics

Date: 2019 Mar 28

1. (20 points.) Consider a wheel rolling on a horizontal surface. The following distinct
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Figure 1: Problem 1.

types of motion are possible for the wheel:

x < θR, slipping (e.g. in snow),
x = θR, perfect rolling,
x > θR, sliding (e.g. on ice).

(1)

Differentiation of the these relations leads to the characterizations, v < ωR, v = ωR, and
v > ωR, respectively, where v = ẋ is the linear velocity and ω = θ̇ is the angular velocity.
Assuming the wheel is perfectly rolling, at a given instant of time, the tendency of motion
could be to slip, to keep on perfectly rolling, or to slide.

Deduce that while perfectly rolling the relative motion of the point on the wheel that is in
contact with the surface with respect to the surface is exactly zero. Thus, conclude that
the force of friction on the wheel is zero. The analogy is a mass at rest on a horizontal
surface. However, while perfectly rolling, it is possible to have the tendency to slip or
slide without actually slipping of sliding. The analogy is that of a mass at rest under the
action of an external force and the force of friction. In these cases the force of friction is
that of static friction and it acts in the forward or backward direction.

In the following we differentiate between the following:

(a) Tendency of the wheel is to slip (without actually slipping) while perfectly rolling.

(b) Tendency of the wheel is to keep on perfectly rolling.

(c) Tendency of the wheel is to slide (without actually sliding) while perfectly rolling.
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Deduce the direction of the force of friction in the above cases. Determine if the friction
is working against linear acceleration or angular acceleration.

Perfect rolling involves the contraint x = θR. Thus, using the D’Alembert principle and
the idea of Lagrange multiplier we can write the Lagragian for a perfectly rolling wheel
on a horizontal surface to be

L(x, ẋ, θ, θ̇) =
1

2
mẋ2 +

1

2
Iθ̇2 − Fs(x− θR), (2)

where m is the mass of the wheel, I is the moment of inertia of the wheel, and Fs is
the Lagrangian multiplier. Using D’Alembert’s principle give an interpretation for the
Lagrangian multiplier Fs. What is the dimension of Fs? Infer the sign of Fs for the cases
when the tendency of the wheel is to slip or slide while perfectly rolling.

2. (20 points.) (In class.) On small angle approximation.

3. (20 points.) (In class.) On symmetries and conservation principles.

4. (20 points.) (In class.) On Poisson bracket.

5. (20 points.) (Refer Sec. 21, Dirac’s book on Quantum Mechanics.)
For two functions

A = A(x,p, t), (3a)

B = B(x,p, t), (3b)

the Poisson braket with respect to the canonical variables x and p is defined as

[

A,B
]P.B.

x,p
≡

∂A

∂x
·
∂B

∂p
−

∂A

∂p
·
∂B

∂x
. (4)

The product rule for Poisson braket can be stated in the following different forms:

[

A1A2, B
]P.B.

x,p
= A1

[

A2, B
]P.B.

x,p
+
[

A1, B
]P.B.

x,p
A2, (5a)

[

A,B1B2

]P.B.

x,p
= B1

[

A,B2

]P.B.

x,p
+
[

A,B1

]P.B.

x,p
B2. (5b)

(a) Thus, evaluate, in two different ways,

[

A1A2, B1B2

]P.B.

x,p
= A1B1

[

A2, B2

]P.B.

x,p
+ A1

[

A2, B1

]P.B.

x,p
B2

+B1

[

A1, B2

]P.B.

x,p
A2 +

[

A1, B1

]P.B.

x,p
B2A2, (6a)

[

A1A2, B1B2

]P.B.

x,p
= B1A1

[

A2, B2

]P.B.

x,p
+B1

[

A1, B2

]P.B.

x,p
A2

+A1

[

A2, B1

]P.B.

x,p
B2 +

[

A1, B1

]P.B.

x,p
A2B2. (6b)
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(b) Subtracting these results, obtain

(A1B1 − B1A1)
[

A2, B2

]P.B.

x,p
=

[

A1, B1

]P.B.

x,p
(A2B2 − B2A2). (7)

Thus, using the definition of the commutation relation,

[

A,B
]

≡ AB − BA, (8)

obtain the relation

[

A1, B1

][

A2, B2

]P.B.

x,p
=

[

A1, B1

]P.B.

x,p

[

A2, B2

]

. (9)

(c) Since this condition holds for A1 and B1 independent of A2 and B2, conclude that

[

A1, B1

]

= ih̄
[

A1, B1

]P.B.

x,p
, (10a)

[

A2, B2

]

= ih̄
[

A2, B2

]P.B.

x,p
, (10b)

where ih̄ is necessarily a constant, independent of A1, A2, B1, and B2. This is the
connection between the commutator braket in quantum mechanics and the Poisson
braket in classical mechanics. If A’s and B’s are numbers, then, because their
commutation relation is equal to zero, we necessairily have h̄ = 0. But, if the
commutation relation of A’s and B’s is not zero, then finite values of h̄ is allowed.

(d) Here the imaginary number i =
√
−1. Show that the constant h̄ is a real number if

we presume the Poisson braket to be real, and require the construction

C =
1

i
(AB − BA) (11)

to be Hermitian. Experiment dictates that h̄ = h/2π, where

h ∼ 6.63× 10−34 J·s (12)

is the Planck’s constant with dimensions of action.
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