Homework No. 01 (Spring 2019) PHYS 510: Classical Mechanics

Due date: Thursday, 2019 Jan 24, 4.30pm

1. (20 points.) Given

$$
\begin{equation*}
F[u]=\int_{x_{1}}^{x_{2}} d x a(x) \frac{d u(x)}{d x} . \tag{1}
\end{equation*}
$$

Evaluate

$$
\begin{equation*}
\frac{\delta F}{\delta u(x)} \tag{2}
\end{equation*}
$$

2. (20 points.) (Gelfand and Fomin, Calculus of Variations.) Evaluate the functional derivatives of the following functionals, assuming no variation at the end points.
(a)

$$
\begin{equation*}
F[y]=\int_{0}^{1} d x \frac{d y}{d x} \tag{3}
\end{equation*}
$$

(b)

$$
\begin{equation*}
F[y]=\int_{0}^{1} d x y \frac{d y}{d x} \tag{4}
\end{equation*}
$$

(c)

$$
\begin{equation*}
F[y]=\int_{0}^{1} d x x y \frac{d y}{d x} \tag{5}
\end{equation*}
$$

(d)

$$
\begin{equation*}
F[y]=\int_{a}^{b} \frac{d x}{x^{3}}\left(\frac{d y}{d x}\right)^{2} \tag{6}
\end{equation*}
$$

3. (20 points.) The distance between two points in a plane is characterized by the infinitesimal statement

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2} \tag{7}
\end{equation*}
$$

Let us prove the intuitively obvious statement that the curve of shortest distance going through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in a plane, the geodesics of a plane, is a straight line passing through the two points. This amounts to finding the extremal of the functional

$$
\begin{equation*}
l[y]=\int_{\left(x_{1}, y_{1}\right)}^{\left(x_{2}, y_{2}\right)} d s=\int_{\left(x_{1}, y_{1}\right)}^{\left(x_{2}, y_{2}\right)} d x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} \tag{8}
\end{equation*}
$$

Using the fact that we require the curve to necessarily pass through the points (x_{1}, y_{1}) and $\left(x_{2}, y_{2}\right)$, show that

$$
\begin{equation*}
\frac{\delta l[y]}{\delta y(x)}=-\frac{d}{d x}\left[\frac{\frac{d y}{d x}}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}}\right] \tag{9}
\end{equation*}
$$

Then, using the condition that the functional derivative is zero for the extremal curve, derive the equation of the geodesic to be given by

$$
\begin{equation*}
\frac{d y}{d x}=c \tag{10}
\end{equation*}
$$

where c is a contant. Identify this as the equation of a straight line in a plane. Find c.

