Homework No. 02 (Spring 2019) PHYS 510: Classical Mechanics

Due date: Tuesday, 2019 Feb 5, 4.30pm

1. (60 points.) Consider a rope of uniform mass density $\lambda=d m / d s$ hanging from two points, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, as shown in Figure 1. The gravitational potential energy of

Figure 1: Problem 1.
an infinitely tiny element of this rope at point (x, y) is given by

$$
\begin{equation*}
d U=d m g y=\lambda g d s y \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2} \tag{2}
\end{equation*}
$$

A catenary is the curve that the rope assumes, that minimizes the total potential energy of the rope.
(a) Show that the total potential energy U of the rope hanging between points x_{1} and x_{2} is given by

$$
\begin{equation*}
U[x]=\lambda g \int_{\left(x_{1}, y_{1}\right)}^{\left(x_{2}, y_{2}\right)} y d s=\lambda g \int_{y_{1}}^{y_{2}} d y y \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} \tag{3}
\end{equation*}
$$

(b) Since the curve passes through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, we have no variations at these (end) points. Thus, show that

$$
\begin{equation*}
\frac{\delta U[x]}{\delta x(y)}=-\lambda g \frac{d}{d y}\left[y \frac{\frac{d x}{d y}}{\sqrt{1+\left(\frac{d x}{d y}\right)^{2}}}\right] \tag{4}
\end{equation*}
$$

(c) Using the extremum principle show that the differential equation for the catenary is

$$
\begin{equation*}
\frac{d x}{d y}=\frac{a}{\sqrt{y^{2}-a^{2}}} \tag{5}
\end{equation*}
$$

where a is an integration contant.
(d) Show that integration of the differential equation yields the equation of the catenary

$$
\begin{equation*}
y=a \cosh \frac{x-x_{0}}{a} \tag{6}
\end{equation*}
$$

where x_{0} is another integration constant.
(e) For the case $y_{1}=y_{2}$ we have

$$
\begin{align*}
& \frac{y_{1}}{a}=\cosh \frac{x_{1}-x_{0}}{a} \tag{7a}\\
& \frac{y_{2}}{a}=\cosh \frac{x_{2}-x_{0}}{a} \tag{7b}
\end{align*}
$$

which leads to the solution, assuming $x_{1} \neq x_{2}$,

$$
\begin{equation*}
x_{0}=\frac{x_{1}+x_{2}}{2} \tag{8}
\end{equation*}
$$

Identify x_{0} in Figure 1.
(f) Next, derive

$$
\begin{equation*}
\frac{y_{1}}{a}=\frac{y_{2}}{a}=\cosh \frac{x_{2}-x_{1}}{2 a} \tag{9}
\end{equation*}
$$

which, in principle, determines a. However, this is a transcendental equation in a and does not allow exact evaluation of a, and one depends on numerical solutions. Observe that, if $x=x_{0}$ in Eq. (6), then $y=a$. Identify a in Figure 1.
2. (20 points.) A catenary is described by

$$
\begin{equation*}
y=a \cosh \left(\frac{x-x_{0}}{a}\right) \tag{10}
\end{equation*}
$$

where constants a and x_{0} are determined by the position of the end points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Let us choose $x_{0}=0$ and $a=1$ such that

$$
\begin{equation*}
y=\cosh x \tag{11}
\end{equation*}
$$

where x and y are dimensionless variables.
(a) Using series expansion show that

$$
\begin{equation*}
\cosh x=1+\frac{x^{2}}{2}+\ldots \tag{12}
\end{equation*}
$$

(b) The parabola

$$
\begin{equation*}
y=1+\frac{x^{2}}{2} \tag{13}
\end{equation*}
$$

is an approximation for the catenary. Plot the above parabola and a catenary in the same plot for $-1<x<1$ and estimate the maximum error in the approximation.

