Homework No. 03 (Spring 2019)

PHYS 510: Classical Mechanics
Due date: Tuesday, 2019 Feb 12, 4.30pm

1. (20 points.) (Refer Goldstein, 2nd edition, Chapter 1 Problem 8.) As a consequence of
the Hamilton’s stationary action principle, the equations of motion for a system can be
expressed as Euler-Lagrange equations,
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in terms of a Lagrangian L(z, #,t). Show that the Lagrangian for a system is not unique.
In particular, show that if L(z, #,t) satisfies the Euler-Lagrange equation then
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where F'(x,t) is any arbitrary differentiable function, also satisfies the Euler-Lagrange
equation.

2. (20 points.) A mass m; is forced to move on a vertical circle of radius R with uniform
angular speed w. Another mass my is connected to mass m; using a massless rod of length
a, such that it is a simple pendulum with respect to mass m;. Motion of both the masses
is constrained to be in a vertical plane in a uniform gravitational field.

(a) Write the Lagrangian for the system.
(b) Determine the equation of motion for the system.
(¢) Give physical interpretation of each term in the equation of motion.
3. (20 points.) A pendulum consists of a mass msy hanging from a pivot by a massless string
of length a. The pivot, in general, has mass m;, but, for simplification let m; = 0. Let
the pivot be constrained to move on a horizontal rod. See Figure 3. For simplification,

and at loss of generality, let us chose the motion of the pendulum in a vertical plane
containing the rod.

(a) Determine the Lagrangian for the system to be

) 1 1 ) )
L(z,%,0,0) = §m2x'2 + §m2a26’2 + moazt cos O + moga cos . (3)



Figure 1: Problem 3.

(b) Evaluate the following derivatives and give physical interpretations of each of these.
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i Mo 4+ moab) cos 0, (4a)
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a—, = mya’6 + moad: cos 0, (4c)
06
g—g = —moaifsind — moga sin 6. (4d)

(c) Determine the equations of motion for the system. Express them in the form
i+ af cosf — abh?sinf = 0, (ba)
af + #cosf + gsinf = 0. (5Db)

Observe that, like in the case of simple pendulum, the motion is independent of the
mass my when m; = 0.

(d) In the small angle approximation show that the equations of motion reduce to

i+ af =0, (6a)
af + i + gb = 0. (6b)

Determine the solution to be given by
=0 and Z=0. (7)

Interpret this solution.

(e) The solution 6 = 0 seems to be too restrictive. Will this system not allow 6 # 07
To investigate this, let us not restrict to the small angle approximation. Rewrite
Egs. (5), using Eq. (5a) in Eq. (5b), as

i+ af cos @ — ab?sin§ = 0, (8a)
sin @ af sin 6 + af® cos 6 + g] = 0. (8b)

2



In this form we immediately observe that 6 = 0 is a solution. However, it is not the
only solution. Towards interpretting Egs. (8) let us identify the coordinates of the
center of mass of the mj-my system,

(M1 + m2)Tem = max + ma(z + asind), (9a)

(mq 4+ m2)Yem = —moacosb, (9b)

which for m; = 0 are the coordinates of the mass m.,

Tem = T + asinb, (10a)
Yem = —acosb. (10b)
Show that
Gem = @ + af cos b, (11a)
Yem = aé sin 6, (11b)
and
Gem = i+ af cos§ — ab?sin 6, (12a)
fJem = afsin @ + abh? cos 6. (12b)

Comparing Egs. (8) and Egs. (12) we learn that

ZTem = 0, (13a)
sme[gcm + g] — 0. (13b)
Thus, e = —g is the more general solution, and # = 0 is a trivial solution.

Let us analyse the system for initial conditions: 6(0) = 6y, (0) = 0, #(0) = 0. Show
that for this case Z¢p(0) = 0 and

a(cos @ — cosby) = %gtz. (14)

Plot 6 as a function of time ¢. Interpret this solution.



