
Homework No. 04 (Spring 2019)

PHYS 510: Classical Mechanics

Due date: Thursday, 2019 Feb 28, 4.30pm

1. (20 points.) A pendulum consists of a mass m2 hanging from a pivot by a massless
string of length a2. The pivot, in general, has mass m1, but, for simplification let m1 = 0.
Let the pivot be constrained to move on a frictionless hoop of radius a1. See Figure 1.
For simplification, and at loss of generality, let us chose the motion of the pendulum in
the plane containing the hoop.
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Figure 1: Problem 1.

(a) Determine the Lagrangian for the system to be

L(θ1, θ̇1, θ2, θ̇2) =
1

2
m2a

2

1
θ̇2
1
+
1

2
m2a

2

2
θ̇2
2
+m2a1a2θ̇1θ̇2 cos(θ1−θ2)+m2ga1 cos θ1+m2ga2 cos θ2.

(1)

(b) Evaluate the following derivatives and give physical interpretations of each of these.

∂L

∂θ̇1
= m2a

2

1
θ̇1 +m2a1a2θ̇2 cos(θ1 − θ2), (2a)

∂L

∂θ1
= −m2a1a2θ̇1θ̇2 sin(θ1 − θ2)−m2ga1 sin θ1, (2b)

∂L

∂θ̇2
= m2a

2

2
θ̇2 +m2a1a2θ̇1 cos(θ1 − θ2), (2c)

∂L

∂θ2
= m2a1a2θ̇1θ̇2 sin(θ1 − θ2)−m2ga2 sin θ2. (2d)
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(c) Determine the equations of motion for the system. Express them in the form

θ̈1 + ω2

1
sin θ1 +

1

β
θ̈2 cos(θ1 − θ2) +

1

β
θ̇2
2
sin(θ1 − θ2) = 0, (3a)

θ̈2 + ω2

2
sin θ2 + βθ̈1 cos(θ1 − θ2)− βθ̇2

1
sin(θ1 − θ2) = 0, (3b)

where

ω2

1
=

g

a1
, ω2

2
=

g

a2
, β =

a1
a2

=
ω2

2

ω2

1

. (4)

Note that β is not an independent parameter. Also, observe that, like in the case of
simple pendulum, the motion is independent of the mass m2 when m1 = 0.

(d) In the small angle approximation show that the equations of motion reduce to

θ̈1 + ω2

1
θ1 +

1

β
θ̈2 = 0, (5a)

θ̈2 + ω2

2
θ2 + βθ̈1 = 0. (5b)

(e) Determine the solution for the initial conditions

θ1(0) = θ2(0) = θ20, θ̇1(0) = θ̇2(0) = 0. (6)

Interpret and expound your solution.

2. (20 points.) Consider the coplanar double pendulum in Figure 2.
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Figure 2: Problem 2.

(a) Write the Lagrangian for the system. in particular, show that the Lagrangian can
be expressed in the form

L = L1 + L2 + Lint, (7)

where

L1 =
1

2
(m1 +m2)a

2

1
θ̇2
1
+ (m1 +m2)ga1 cos θ1, (8a)

L2 =
1

2
m2a

2

2
θ̇2
2
+m2ga2 cos θ2, (8b)

Lint = m2a1a2θ̇1θ̇2 cos(θ1 − θ2). (8c)
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(b) Determine the equations of motion for the system. Express them in the form

(m1 +m2)a1θ̈1 + (m1 +m2)g sin θ1 +m2a2θ̈2 cos(θ1 − θ2) +m2a2θ̇
2

2
sin(θ1 − θ2) = 0, (9a)

a2θ̈2 + g sin θ2 + a1θ̈1 cos(θ1 − θ2)− a1θ̇
2

1
sin(θ1 − θ2) = 0. (9b)

(c) In the small angle approximation show that the equations of motion reduce to

θ̈1 + ω2

1
θ1 +

α

β
θ̈2 = 0, (10a)

θ̈2 + ω2

2
θ1 + βθ̈1 = 0, (10b)

where

ω2

1
=

g

a1
, ω2

2
=

g

a2
, α =

m2

m1 +m2

, β =
a1
a2

=
ω2

2

ω2

1

. (11)

Note that 0 ≤ α ≤ 1.

(d) Determine the solution for the initial conditions

θ1(0) = 0, θ2(0) = 0, θ̇1(0) = 0, θ̇2(0) = ω0, (12)

for α = 1/2 and β = 1.
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