Homework No. 05 (Spring 2019) PHYS 510: Classical Mechanics

Due date: Thursday, 2019 Mar 7, 4.30pm

1. (20 points.) Consider the function describing a paraboloid

$$
\begin{equation*}
f(x, y)=a\left(x^{2}+y^{2}\right) \tag{1}
\end{equation*}
$$

A straight line on the $x y$ plane, $y=m x+c$, can be interpreted as a condition of constraint

$$
\begin{equation*}
g(x, y)=y-m x-c=0 . \tag{2}
\end{equation*}
$$

Let us determine the point on the line where the function $f(x, y)$ has an extremum value.
(a) Construct the function

$$
\begin{equation*}
F(x)=f(x, m x+c) . \tag{3}
\end{equation*}
$$

Using the extremum principle, $d F / d x=0$, show that the point on the line where the function f is an extremum is

$$
\begin{equation*}
x=-\frac{m c}{1+m^{2}}, \quad y=\frac{c}{1+m^{2}} . \tag{4}
\end{equation*}
$$

(b) Construct the function

$$
\begin{equation*}
h(x, y)=f(x, y)+\lambda g(x, y) . \tag{5}
\end{equation*}
$$

Evaluate $\boldsymbol{\nabla} h, \boldsymbol{\nabla} f$, and $\boldsymbol{\nabla} g$. Show that $\boldsymbol{\nabla} h=0$ implies

$$
\begin{equation*}
x=\frac{\lambda m}{2 a}, \quad y=-\frac{\lambda}{2 a} . \tag{6}
\end{equation*}
$$

Use this in the condition of constraint to derive

$$
\begin{equation*}
\lambda=-\frac{2 a c}{1+m^{2}} \tag{7}
\end{equation*}
$$

Use the above expression for λ in Eq. (6) to find the point on the line where the function f is an extremum.
2. (20 points.) Spherical pendulum: Consider a pendulum that is suspended such that a mass m is able to move freely on the surface of a sphere of radius a (the length of the pendulum). The mass is then subject to the condition of constraint

$$
\begin{equation*}
F=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}-a^{2}\right)=0 \tag{8}
\end{equation*}
$$

where the factor of $1 / 2$ is introduced anticipating cancellations. Consider the Lagrangian function

$$
\begin{equation*}
L(\mathbf{r}, \dot{\mathbf{r}})=\frac{1}{2} m \dot{\mathbf{r}}^{2}-m g z-\lambda F . \tag{9}
\end{equation*}
$$

(a) Evaluate the gradient $\boldsymbol{\nabla}$ of the condition of constraint. Show that

$$
\begin{equation*}
\nabla F=\mathbf{r} \tag{10}
\end{equation*}
$$

(b) Using the Euler-Lagrange equations derive the equations of motion

$$
\begin{equation*}
m \ddot{\mathbf{r}}=-m g \hat{\mathbf{z}}+\lambda \mathbf{r} . \tag{11}
\end{equation*}
$$

(c) Derive an expression for λ. In particular, show that it can be expressed in the form

$$
\begin{equation*}
\lambda a=\hat{\mathbf{r}} \cdot \mathbf{N} \tag{12}
\end{equation*}
$$

Find \mathbf{N}. Give the physical interpretation of \mathbf{N} using D'Alembert's principle.
(d) Show that the angular momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$, where $\mathbf{p}=m \dot{\mathbf{r}}$ is the momentum of the particle, about the z-axis is conserved. That is,

$$
\begin{equation*}
\frac{d}{d t}(\hat{\mathbf{z}} \cdot \mathbf{L})=0 \tag{13}
\end{equation*}
$$

Show that this also implies the conservation of the areal velocity

$$
\begin{equation*}
\frac{d S}{d t}=\frac{1}{2}(x \dot{y}-y \dot{x}) \tag{14}
\end{equation*}
$$

where S is the area swept out.
(e) Show that

$$
\begin{equation*}
\frac{d F}{d t}=\mathbf{r} \cdot \dot{\mathbf{r}}=0 \tag{15}
\end{equation*}
$$

Using this derive the statement of conservation of energy,

$$
\begin{equation*}
\frac{d H}{d t}=0, \quad H=\frac{1}{2} m \dot{\mathbf{r}}^{2}+m g z \tag{16}
\end{equation*}
$$

starting from the equation of motion in Eq. (11) and multiplying by $\dot{\mathbf{r}}$.

