Homework No. 06 (Spring 2019) PHYS 510: Classical Mechanics

Due date: Tuesday, 2019 Mar 26, 4.30pm

1. (40 points.) In terms of the Lagrangian function $L(\mathbf{r}, \mathbf{v}, t)$ the action functional $W\left[\mathbf{r} ; t_{1}, t_{2}\right]$ is defined as

$$
\begin{equation*}
W\left[\mathbf{r} ; t_{1}, t_{2}\right]=\int_{t_{1}}^{t_{2}} d t L(\mathbf{r}, \mathbf{v}, t) \tag{1}
\end{equation*}
$$

where $\mathbf{v}=d \mathbf{r} / d t$.
(a) For arbitrary infinitesimal variations in the path

$$
\begin{equation*}
\overline{\mathbf{r}}(t)=\mathbf{r}(t)-\delta \mathbf{r}(t) \tag{2}
\end{equation*}
$$

and infinitesimal general time transformation

$$
\begin{equation*}
\bar{t}=t-\delta t(t) \tag{3}
\end{equation*}
$$

the change in action is given by

$$
\begin{align*}
\delta W= & \int_{t_{1}}^{t_{2}} d t \frac{d}{d t}[\mathbf{p} \cdot \delta \mathbf{r}-H \delta t] \\
& +\int_{t_{1}}^{t_{2}} d t\left[\delta t\left(\frac{d H}{d t}+\frac{\partial L}{\partial t}\right)+\delta \mathbf{r} \cdot\left(\frac{\partial L}{\partial \mathbf{r}}-\frac{d}{d t} \frac{\partial L}{\partial \mathbf{v}}\right)\right], \tag{4}
\end{align*}
$$

where the canonical momentum and the Hamiltonian are defined as

$$
\begin{equation*}
\mathbf{p}=\frac{\partial L}{\partial \mathbf{v}} \quad \text { and } \quad H=\mathbf{v} \cdot \mathbf{p}-L \tag{5}
\end{equation*}
$$

respectively.
(b) The change in the action due to variations in path is captured in the functional derivative

$$
\begin{equation*}
\frac{\delta W}{\delta \mathbf{r}(t)}=\left(\frac{\partial L}{\partial \mathbf{r}}-\frac{d}{d t} \frac{\partial L}{\partial \mathbf{v}}\right)+\left[\delta\left(t-t_{2}\right)-\delta\left(t-t_{1}\right)\right] \mathbf{p} \tag{6}
\end{equation*}
$$

The change in the action due to time transformation is captured in the functional derivative

$$
\begin{equation*}
\frac{\delta W}{\delta t(t)}=\left(\frac{d H}{d t}+\frac{\partial L}{\partial t}\right)-\left[\delta\left(t-t_{2}\right)-\delta\left(t-t_{1}\right)\right] H \tag{7}
\end{equation*}
$$

(c) In terms of the Hamiltonian the action takes the form

$$
\begin{equation*}
W\left[\mathbf{r}, \mathbf{p} ; t_{1}, t_{2}\right]=\int_{t_{1}}^{t_{2}} d t[\mathbf{v} \cdot \mathbf{p}-H(\mathbf{r}, \mathbf{p}, t)] . \tag{8}
\end{equation*}
$$

(d) Show that for for arbitrary infinitesimal variations in coordinate and momentum

$$
\begin{equation*}
\overline{\mathbf{r}}(t)=\mathbf{r}(t)-\delta \mathbf{r}(t) \quad \text { and } \quad \overline{\mathbf{p}}(t)=\mathbf{p}(t)-\delta \mathbf{p}(t) \tag{9}
\end{equation*}
$$

and infinitesimal general time transformation, the change in action is given by

$$
\begin{align*}
\delta W= & \int_{t_{1}}^{t_{2}} d t \frac{d}{d t}[\mathbf{p} \cdot \delta \mathbf{r}-H \delta t] \\
& +\int_{t_{1}}^{t_{2}} d t\left[\delta t\left(\frac{d H}{d t}-\frac{\partial H}{\partial t}\right)-\delta \mathbf{r} \cdot\left(\frac{d \mathbf{p}}{d t}+\frac{\partial H}{\partial \mathbf{r}}\right)+\delta \mathbf{p} \cdot\left(\frac{d \mathbf{r}}{d t}-\frac{\partial H}{\partial \mathbf{p}}\right)\right] . \tag{10}
\end{align*}
$$

2. (20 points.) Consider infinitesimal rigid rotation, described by

$$
\begin{equation*}
\delta \mathbf{r}=\delta \boldsymbol{\omega} \times \mathbf{r}, \quad \delta \mathbf{p}=\delta \boldsymbol{\omega} \times \mathbf{p}, \quad \delta t=0, \tag{11}
\end{equation*}
$$

where $d \delta \boldsymbol{\omega} / d t=0$. Show that the variation in the action under the above rotation is

$$
\begin{equation*}
\frac{\delta W}{\delta \boldsymbol{\omega}}=\int_{t_{1}}^{t_{2}} d t\left[\mathbf{r} \times \frac{\partial H}{\partial \mathbf{r}}+\mathbf{p} \times \frac{\partial H}{\partial \mathbf{p}}\right]=\mathbf{L}\left(t_{2}\right)-\mathbf{L}\left(t_{1}\right) \tag{12}
\end{equation*}
$$

where $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ is the angular momentum. Thus, state the conditions to be satisfied by the Hamitonian for the angular momentum \mathbf{L} of the system to be conserved.
3. (30 points.) (Refer Schwinger, chapter 9) The Hamiltonian for a hydrogenic atom is

$$
\begin{equation*}
H=\frac{p_{1}^{2}}{2 m_{1}}+\frac{p_{2}^{2}}{2 m_{2}}-\frac{Z e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \tag{13}
\end{equation*}
$$

where \mathbf{r}_{1} and \mathbf{r}_{2} are the positions of the two constituent particles of masses m_{1} and m_{2} and charges e and $Z e$.
(a) Introduce the coordinates representing the center of mass, relative position, total momentum, and relative momentum:

$$
\begin{equation*}
\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}, \quad \mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}, \quad \mathbf{P}=\mathbf{p}_{1}+\mathbf{p}_{2}, \quad \mathbf{p}=\frac{m_{2} \mathbf{p}_{1}-m_{1} \mathbf{p}_{2}}{m_{1}+m_{2}} \tag{14}
\end{equation*}
$$

respectively, to rewrite the Hamiltonian as

$$
\begin{equation*}
H=\frac{P^{2}}{2 M}+\frac{p^{2}}{2 \mu}-\frac{Z e^{2}}{r}, \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
M=m_{1}+m_{2}, \quad \frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}} . \tag{16}
\end{equation*}
$$

(b) Show that Hamilton's equations of motion are given by

$$
\begin{equation*}
\frac{d \mathbf{R}}{d t}=\frac{\mathbf{P}}{M}, \quad \frac{d \mathbf{P}}{d t}=0, \quad \frac{d \mathbf{r}}{d t}=\frac{\mathbf{p}}{\mu}, \quad \frac{d \mathbf{p}}{d t}=-Z e^{2} \frac{\mathbf{r}}{r^{3}} . \tag{17}
\end{equation*}
$$

(c) Verify that the Hamiltonian H, the angular momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$, and the Laplace-Runge-Lenz vector

$$
\begin{equation*}
\mathbf{A}=\frac{\mathbf{r}}{r}-\frac{1}{\mu Z e^{2}} \mathbf{p} \times \mathbf{L} \tag{18}
\end{equation*}
$$

are the three constants of motion for a hydrogenic atom.

