Homework No. 08 (Spring 2019) PHYS 510: Classical Mechanics

Due date: Tuesday, 2019 Apr 16, 4.30pm

1. (50 points.) The Hamiltonian for a Kepler problem is

$$
\begin{equation*}
H(\mathbf{r}, \mathbf{p})=\frac{p^{2}}{2 \mu}-\frac{\alpha}{r} \tag{1}
\end{equation*}
$$

The Hamiltonian H, the angular momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$, and the axial vector

$$
\begin{equation*}
\mathbf{A}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times \mathbf{L}}{\mu \alpha} \tag{2}
\end{equation*}
$$

are conserved quantities for a Kepler problem.
(a) Show that

$$
\begin{equation*}
\mathbf{W}=\frac{\mu \alpha}{L^{2}} \mathbf{A} \times \mathbf{L} \tag{3}
\end{equation*}
$$

is also a conserved quantity. That is, show that $d \mathbf{W} / d t=0$. Thus, together, the vectors \mathbf{L}, \mathbf{A}, and \mathbf{W}, form an orthogonal set that remain fixed in time. Show that the vector \mathbf{W} can be expressed in the form

$$
\begin{equation*}
\mathbf{W}=\mathbf{p}+\frac{\mu \alpha}{L^{2}} \hat{\mathbf{r}} \times \mathbf{L} \tag{4}
\end{equation*}
$$

Further, show that

$$
\begin{equation*}
W=\mu \alpha \frac{A}{L} \tag{5}
\end{equation*}
$$

(b) Determine the components of the momentum \mathbf{p} along these orthogonal vectors by evaluating $(\mathbf{p} \cdot \hat{\mathbf{L}}),(\mathbf{p} \cdot \hat{\mathbf{A}})$, and $(\mathbf{p} \cdot \hat{\mathbf{W}})$. Thus, construct the momentum \mathbf{p} in the form

$$
\begin{equation*}
\mathbf{p}=(\mathbf{p} \cdot \hat{\mathbf{L}}) \hat{\mathbf{L}}+(\mathbf{p} \cdot \hat{\mathbf{A}}) \hat{\mathbf{A}}+(\mathbf{p} \cdot \hat{\mathbf{W}}) \hat{\mathbf{W}} \tag{6}
\end{equation*}
$$

Hint: Show that

$$
\begin{equation*}
\mathbf{p} \cdot \mathbf{L}=0, \quad \mathbf{p} \cdot \mathbf{A}=\mathbf{p} \cdot \hat{\mathbf{r}}, \quad \mathbf{p} \cdot \mathbf{W}=\frac{p^{2}}{2}+\mu H \tag{7}
\end{equation*}
$$

(c) It is well known that the position \mathbf{r} traverses an ellipse about the origin. This is the content of Kepler's first law of motion. Show that the momentum p traverses a circle about a fixed point \mathbf{p}_{0}. That is, show that the momentum \mathbf{p} satisfies the equation of a circle,

$$
\begin{equation*}
\left|\mathbf{p}-\mathbf{p}_{0}\right|=q . \tag{8}
\end{equation*}
$$

Hint: Rewrite the expression for $(\mathbf{p} \cdot \hat{\mathbf{W}})$ in the form $\mathbf{p} \cdot \mathbf{p}-2 \mathbf{p} \cdot \mathbf{W}+\mathbf{W} \cdot \mathbf{W}=W^{2}-2 \mu H$.
(d) Determine the vector \mathbf{p}_{0} representing the center of this circle, and find the radius q of this circle. Verify that the center \mathbf{p}_{0} is a conserved quantity.
Solution: $\mathbf{p}_{0}=\mathbf{W}$ and $q=\mu \alpha / L$.
(e) Show that when the position \mathbf{r} traverses a circle $(A=0)$ the center of the circle traversed by momentum \mathbf{p} is the origin.

