Homework No. 08 (Spring 2019)

PHYS 510: Classical Mechanics

Due date: Tuesday, 2019 Apr 16, 4.30pm

1. (50 points.) The Hamiltonian for a Kepler problem is

$$H(\mathbf{r}, \mathbf{p}) = \frac{p^2}{2\mu} - \frac{\alpha}{r}.\tag{1}$$

The Hamiltonian H, the angular momentum $\mathbf{L} = \mathbf{r} \times \mathbf{p}$, and the axial vector

$$\mathbf{A} = \frac{\mathbf{r}}{r} - \frac{\mathbf{p} \times \mathbf{L}}{\mu \alpha},\tag{2}$$

are conserved quantities for a Kepler problem.

(a) Show that

$$\mathbf{W} = \frac{\mu \alpha}{L^2} \mathbf{A} \times \mathbf{L} \tag{3}$$

is also a conserved quantity. That is, show that $d\mathbf{W}/dt = 0$. Thus, together, the vectors \mathbf{L} , \mathbf{A} , and \mathbf{W} , form an orthogonal set that remain fixed in time. Show that the vector \mathbf{W} can be expressed in the form

$$\mathbf{W} = \mathbf{p} + \frac{\mu \alpha}{L^2} \hat{\mathbf{r}} \times \mathbf{L}. \tag{4}$$

Further, show that

$$W = \mu \alpha \frac{A}{L}.\tag{5}$$

(b) Determine the components of the momentum \mathbf{p} along these orthogonal vectors by evaluating $(\mathbf{p} \cdot \hat{\mathbf{L}})$, $(\mathbf{p} \cdot \hat{\mathbf{A}})$, and $(\mathbf{p} \cdot \hat{\mathbf{W}})$. Thus, construct the momentum \mathbf{p} in the form

$$\mathbf{p} = (\mathbf{p} \cdot \hat{\mathbf{L}}) \,\hat{\mathbf{L}} + (\mathbf{p} \cdot \hat{\mathbf{A}}) \,\hat{\mathbf{A}} + (\mathbf{p} \cdot \hat{\mathbf{W}}) \,\hat{\mathbf{W}}. \tag{6}$$

Hint: Show that

$$\mathbf{p} \cdot \mathbf{L} = 0, \quad \mathbf{p} \cdot \mathbf{A} = \mathbf{p} \cdot \hat{\mathbf{r}}, \quad \mathbf{p} \cdot \mathbf{W} = \frac{p^2}{2} + \mu H.$$
 (7)

(c) It is well known that the position \mathbf{r} traverses an ellipse about the origin. This is the content of Kepler's first law of motion. Show that the momentum \mathbf{p} traverses a circle about a fixed point \mathbf{p}_0 . That is, show that the momentum \mathbf{p} satisfies the equation of a circle,

$$|\mathbf{p} - \mathbf{p}_0| = q. \tag{8}$$

Hint: Rewrite the expression for $(\mathbf{p} \cdot \hat{\mathbf{W}})$ in the form $\mathbf{p} \cdot \mathbf{p} - 2\mathbf{p} \cdot \mathbf{W} + \mathbf{W} \cdot \mathbf{W} = W^2 - 2\mu H$.

- (d) Determine the vector \mathbf{p}_0 representing the center of this circle, and find the radius q of this circle. Verify that the center \mathbf{p}_0 is a conserved quantity. Solution: $\mathbf{p}_0 = \mathbf{W}$ and $q = \mu \alpha / L$.
- (e) Show that when the position \mathbf{r} traverses a circle (A=0) the center of the circle traversed by momentum \mathbf{p} is the origin.