Homework No. 09 (Spring 2019) PHYS 510: Classical Mechanics

Due date: Tuesday, 2019 Apr 23, 4.30pm

1. (20 points.) Lorentz transformation describing a boost in the x-direction, y-direction, and z-direction, are
$L_{1}=\left(\begin{array}{cccc}\gamma_{1} & -\beta_{1} \gamma_{1} & 0 & 0 \\ -\beta_{1} \gamma_{1} & \gamma_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right), \quad L_{2}=\left(\begin{array}{cccc}\gamma_{2} & 0 & -\beta_{2} \gamma_{2} & 0 \\ 0 & 1 & 0 & 0 \\ -\beta_{2} \gamma_{2} & 0 & \gamma_{2} & 0 \\ 0 & 0 & 0 & 1\end{array}\right), \quad L_{3}=\left(\begin{array}{cccc}\gamma_{3} & 0 & 0 & -\beta_{3} \gamma_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta_{3} \gamma_{3} & 0 & 0 & \gamma_{3}\end{array}\right)$,
respectively. Transformation describing a rotation about the x-axis, y-axis, and z-axis, are
$R_{1}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \omega_{1} & \sin \omega_{1} \\ 0 & 0 & -\sin \omega_{1} & \cos \omega_{1}\end{array}\right), \quad R_{2}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \omega_{2} & 0 & -\sin \omega_{2} \\ 0 & 0 & 1 & 0 \\ 0 & \sin \omega_{2} & 0 & \cos \omega_{2}\end{array}\right), \quad R_{3}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \omega_{3} & \sin \omega_{3} & 0 \\ 0 & -\sin \omega_{3} & \cos \omega_{3} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$,
respectively. For infinitesimal transformations, $\beta_{i}=\delta \beta_{i}$ and $\omega_{i}=\delta \omega_{i}$ use the approximations

$$
\begin{equation*}
\gamma_{i} \sim 1, \quad \cos \omega_{i} \sim 1, \quad \sin \omega_{i} \sim \delta \omega_{i} \tag{3}
\end{equation*}
$$

to identify the generator for boosts \mathbf{N}, and the generator for rotations the angular momentum J,

$$
\begin{equation*}
\mathbf{L}=\mathbf{1}+\delta \boldsymbol{\beta} \cdot \mathbf{N} \quad \text { and } \quad \mathbf{R}=\mathbf{1}+\delta \boldsymbol{\omega} \cdot \mathbf{J} \tag{4}
\end{equation*}
$$

respectively. Then derive

$$
\begin{equation*}
\left[N_{1}, N_{2}\right]=N_{1} N_{2}-N_{2} N_{1}=J_{3} \tag{5}
\end{equation*}
$$

This states that boosts in perpendicular direction leads to rotation. (To gain insight of the statement, calculate $\left[J_{1}, J_{2}\right]$ and interpret the result.)
(a) Is velocity addition commutative?
(b) Is velocity addition associative?
(c) Read a resource article (Wikipedia) on Wigner rotation.
2. (20 points.) (Refer Hughston and Tod's book.)

Prove that
(a) if p_{μ} is a time-like vector and $p^{\mu} s_{\mu}=0$ then s^{μ} is necessarily space-like.
(b) if p_{μ} and q^{μ} are both time-like vectors and $p^{\mu} q_{\mu}>0$ then either both are futurepointing or both are past-pointing.

