Homework No. 04 (2019 Fall)

PHYS 301: Theoretical Methods in Physics

Due date: Friday, 2019 Sep 13, 10:00 AM, in class

- 1. Keywords: Eigenvalues and eigenvectors of a matrix; Matrix diagonalization; Properties of Pauli matrices; Eigenbasis dependence of matrices.
- 2. (40 points.) Consider the rotation matrix

$$\mathbf{A} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}. \tag{1}$$

- (a) Find the eigenvalues of the matrix **A**.
- (b) Find the normalized eigenvectors of matrix **A**.
- (c) Determine the matrix that diagonalizes the matrix **A**.
- (d) What can you then conclude about the eigenvalues and eigenvectors of \mathbf{A}^{107} ? Find them.
- 3. (45 points.) A particular representation of Pauli matrices is

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
 (2)

(In particular, these are Pauli matrices in the eigenbasis of σ_z .) Find the eigenvalues, normalized eigenvectors, and diagonalizing matrix, for each of the three Pauli matrix. Verify that your results satisfy the eigenvalue equation.

4. (20 points.) Construct the matrix

$$\sigma \cdot \hat{\mathbf{r}},$$
 (3)

where

$$\boldsymbol{\sigma} = \sigma_x \hat{\mathbf{i}} + \sigma_y \hat{\mathbf{j}} + \sigma_z \hat{\mathbf{k}},\tag{4}$$

$$\hat{\mathbf{r}} = \sin \theta \cos \phi \hat{\mathbf{i}} + \sin \theta \sin \phi \hat{\mathbf{j}} + \cos \theta \hat{\mathbf{k}}.$$
 (5)

Use the representation of Pauli matrices is

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
 (6)

Find the eigenvalues of the matrix $\boldsymbol{\sigma} \cdot \hat{\mathbf{r}}$.

5. (20 points.) The Pauli matrix

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{7}$$

is written in the eigenbasis of

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{8}$$

Write σ_x in the eigenbasis of

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}. \tag{9}$$

Note that this representation has the arbitraryness of the choice of phase in the eigenvectors.