Homework No. 06 (Fall 2019)

PHYS 520A: Electromagnetic Theory I

Due date: Monday, 2019 Oct 28, 4.00pm

1. (20 points.) The response of a material to an electric field, in a particular model, is described by the susceptibility function

$$\chi(\omega) = \frac{\omega_p^2}{\omega_0^2 - i\omega\gamma},\tag{1}$$

where ω_p , ω_0 , and γ are material dependent parameters, and ω is the frequency of oscillation of the electric field.

- (a) $[\text{Re}\chi(\omega)]$ is a measure of the square of the refractive index. Plot $[\text{Re}\chi(\omega)]$ as a function of ω .
- (b) $[\operatorname{Im}\chi(\omega)]$ is a measure of absorption of light. Plot $[\operatorname{Im}\chi(\omega)]$ as a function of ω .
- 2. (20 points.) A simple model for susceptibility is

$$\chi(\omega) = \frac{\omega_1}{\omega_0 - \omega} + i \pi \omega_1 \delta(\omega - \omega_0), \tag{2}$$

where ω_0 and ω_1 represent physical parameters of a material.

(a) Note that

$$[\operatorname{Re}\chi(\omega)] = \frac{\omega_1}{\omega_0 - \omega}$$
 and $[\operatorname{Im}\chi(\omega)] = \pi\omega_1\delta(\omega - \omega_0).$ (3)

- (b) Plot $[\text{Re}\chi(\omega)]$ and $[\text{Im}\chi(\omega)]$ with respect to ω .
- (c) Evaluate the right hand side of the Kramers-Kronig relation

$$[\operatorname{Re}\chi(\omega)] = \lim_{\delta \to 0+} \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} [\operatorname{Im}\chi(\omega')] \, 2\operatorname{Re}\left\{\frac{1}{\omega' - (\omega + i\delta)}\right\} \tag{4}$$

for this simple model.