
Homework No. 09 (2020 Spring)
PHYS 510: CLASSICAL MECHANICS

Department of Physics, Southern Illinois University–Carbondale

Due date: Thursday, 2020 Apr 30, 4.30pm

1. (20 points.) (Refer Hughston and Tod’s book.) Prove that

(a) if pµ is a time-like vector and pµsµ = 0 then sµ is necessarily space-like.

(b) if pµ and qµ are both time-like vectors and pµqµ < 0 then either both are future-
pointing or both are past-pointing.

2. (20 points.) Let
tanh θ = β, (1)

where β = v/c. Addition of (parallel) velocities in terms of the parameter θ obeys the
arithmatic addition

θ = θa + θb. (2)

(a) Invert the expression in Eq. (1) to find the explicit form of θ in terms of β as a
logarithm.

(b) Show that Eq. (2) leads to the relation

(

1 + β

1− β

)
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(

1 + βa

1− βa

)(

1 + βb

1− βb

)

. (3)

(c) Using Eq. (3) derive the Poincaré formula for the addition of (parallel) velocities.

3. (20 points.) The path of a relativistic particle moving along a straight line with constant
(proper) acceleration α is described by equation of a hyperbola

z2 − c2t2 = z2
0
, z0 =

c2

α
. (4)

(a) This represents the world-line of a particle thrown from z > z0 at t < 0 towards
z = z0 in region of constant (proper) acceleration α as described by the bold (blue)
curve in the space-time diagram in Figure 3. In contrast a Newtonian particle moving
with constant acceleration α is described by equation of a parabola

z − z0 =
1

2
αt2 (5)
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Figure 1: Problem 3

as described by the dashed (red) curve in the space-time diagram in Figure 3. Show
that the hyperbolic curve

z = z0

√

1 +
c2t2

z2
0

(6)

in regions that satisfy

t ≪
c

α
(7)

is approximately the parabolic curve

z = z0 +
1

2
αt2 + . . . . (8)

(b) Recognize that the proper acceleration α does not have an upper bound.

(c) A large acceleration is achieved by taking above turn while moving very fast. Thus,
turning around while moving close to the speed of light c should achieve the highest
acceleration. Show that α → ∞ corresponding to z0 → 0 represents this scenario.
What is the equation of motion of a particle moving with infinite proper acceleration.
Plot world-lines of particles moving with α = c2/z0, α = 10c2/z0, and α = 100c2/z0.

4. (20 points.) The path of a relativistic particle 1 moving along a straight line with
constant (proper) acceleration g is described by the equation of a hyperbola

z1(t) =
√

c2t2 + z2
0
, z0 =

c2

g
. (9)

This is the motion of a particle that comes to existance at z1 = +∞ at t = −∞, then
‘falls’ with constant (proper) acceleration g. If we choose xq(0) = 0 and yq(0) = 0, the
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particle ‘falls’ keeping itself on the z-axis, comes to stop at z = z0, and then returns back
to infinity. Consider another relavistic particle 2 undergoing hyperbolic motion given by

z2(t) = −

√

c2t2 + z2
0
, z0 =

c2

g
. (10)

This is the motion of a particle that comes to existance at z2 = −∞ at t = −∞, then
‘falls’ with constant (proper) acceleration g. If we choose xq(0) = 0 and yq(0) = 0, the
particle ‘falls’ keeping itself on the z-axis, comes to stop at z = −z0, and then returns
back to negative infinity. The world-line of particle 1 is the blue curve in Figure 4, and
the world-line of particle 2 is the red curve in Figure 4. Using geometric (diagrammatic)
arguments might be easiest to answer the following. Imagine the particles are sources of
light (imagine a flash light pointing towards origin).
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Figure 2: Problem 4

(a) At what time will the light from particle 1 first reach particle 2? Where are the
particles when this happens?

(b) At what time will the light from particle 2 first reach particle 1? Where are the
particles when this happens?

(c) Can the particles communicate with each other?

(d) Can the particles ever detect the presence of the other? In other words, can one
particle be aware of the existence of the other? What can you deduce about the
observable part of our universe from this analysis?

3


