# Midterm Exam No. 01 (2021 Spring) <br> PHYS 420: Electricity and Magnetism II <br> Department of Physics, Southern Illinois University-Carbondale <br> Due date: Monday, 2021 Feb 22, 2:00 PM 

1. ( 20 points.) A charged particle in a magnetic field goes in circles (or in helices). Recall that positron is the antiparticle of electron. Describe the motion of a positron in a magnetic field, and contrast it to that of an electron in a magnetic field. How will the ionization track of electron and positron differ in a bubble chamber? For example, refer to the picture at 34:21 minute in the lecture by Frank Close, part of

$$
\text { Christmas Lectures, } 1993 .
$$

2. (20 points.) Consider a straight wire of radius $a$ carrying current $I$ described using the current density

$$
\begin{equation*}
\mathbf{J}(\mathbf{r})=\hat{\mathbf{z}} \frac{C}{\rho} e^{-\lambda \rho} \theta(a-\rho), \tag{1}
\end{equation*}
$$

where $\theta(x)=1$ for $x>1$ and zero otherwise.
(a) Find $C$ in terms of the current $I$.
(b) Find the magnetic field inside and outside the wire.
(c) Plot the magnetic field as a function of $\rho$.
3. (20 points.) A circular wire carrying current $I$ forms a loop of radius $a$ and is described by current density

$$
\begin{equation*}
\mathbf{j}\left(\mathbf{r}^{\prime}\right)=\hat{\phi}^{\prime} I \delta\left(z^{\prime}\right) \delta\left(\rho^{\prime}-a\right) . \tag{2}
\end{equation*}
$$

Determine the magnetic vector potential using

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \frac{\mathbf{j}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{3}
\end{equation*}
$$

on the axis of the circular wire at $\mathbf{r}=z \hat{\mathbf{k}}$. Determine the magnetic field using

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \mathbf{j}\left(\mathbf{r}^{\prime}\right) \times \frac{\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{4}
\end{equation*}
$$

on the axis of the circular wire at $\mathbf{r}=z \hat{\mathbf{k}}$.
4. (20 points.) The magnetic field $\mathbf{B}$ is determined using the vector potential $\mathbf{A}$ by the relation

$$
\begin{equation*}
\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A} . \tag{5}
\end{equation*}
$$

Determine the vector potential for a uniform magnetic field pointing in the $\hat{\mathbf{z}}$ direction. Is this a unique construction.

