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1. (20 points.) Magnets are described by their magnetic moment. Estimate the magnetic
moment m of Earth, assuming it to be a point magnetic dipole. Assume the magnitude of
the Earth’s magnetic field on its surface at the North pole to be 0.7×10−4 T = 0.7Gauss.
Show your work.

2. (20 points.) A typical bar magnet is suitably approximated as a point magnetic dipole
moment m. The magnetic field due to a point magnetic dipole m at a distance r away
from the magnetic dipole is given by the expression

B(r) =
µ0

4π

[

3(m · r̂)r̂−m
]

r3
, r 6= 0. (1)

Consider the case when the point dipole is positioned at the origin and is pointing in the
z-direction, i.e., m = m ẑ.

(a) Qualitatively (and neatly) plot the magnetic field lines for the dipole m. (Hint:
You do not have to depend on Eq. (1) for this purpose. An intuitive knowledge of
magnetic field lines should be the guide.)

(b) Find the expression for the magnetic field on the negative x-axis.

3. (20 points.) Determine the total magnetic dipole moment for the following configuration.
The current in the loop is I and each fold in the loop is of length a.
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Figure 1: Problem 3
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4. (20 points.) A four-vector in the context of Lorentz tranformation can be described
using the notation

aα = (a0, a1, a2, a3). (2)

Let
bα = (b0, b1, b2, b3) (3)

be another four-vector. The scalar product between two Lorentz vectors is given by

aαbα = −a0b0 + a1b1 + a2b2 + a3b3. (4)

The square of the ‘length’ of the four-vector aα is given by

aαaα, (5)

which is not necessarily positive. The length of a four-vector is invariant, that is, it is
independent of the Lorentz frame. If two Lorentz four-vectors are orthogonal they satisfy

aαbα = 0. (6)

Orthogonality is an invariant concept.

(a) Determine the length of
pα = (5, 0, 0, 3), (7)

where the numbers are in arbitrary units. Is it time-like, light-like, or space-like?

(b) Find a four-vector of the form

qα = (q0, 0, 0, q3) (8)

that is perpendicular to pα.

5. (20 points.) This problem is mostly a reading exercise. Go through the following
discussion. The additional term 3πk4/64 in Eq. (13a) below is the higher order term
necessary to fix the discrepancy encountered in the class. Then, evaluate the magnetic
vector potential and the magnetic field on the axis of the loop. This is achieved by letting
ρ → 0 in the last two equations below.

A circular loop of radius a carrying a steady current I with the loop chosen to be in the
x-y plane with the origin at the center of the loop has the the magnetic vector potential
given by

A(r) = φ̂
µ0I

4π

4a
√

z2 + (ρ+ a)2

[

2

k2

{

K(k)−E(k)
}

−K(k)

]

, (9)

where

k2 =
4aρ

z2 + (ρ+ a)2
. (10)
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The magnetic field is

B(r) = ẑ
µ0I

4π

2
√

z2 + (ρ+ a)2

[

K(k)−
(z2 + ρ2 − a2)

z2 + (ρ− a)2
E(k)

]

−ρ̂
µ0I

4π

2
√

z2 + (ρ+ a)2
z

ρ

[

K(k)−
(z2 + ρ2 + a2)

z2 + (ρ− a)2
E(k)

]

. (11)

We can evaluate the vector potential and the magnetic field close to the symmetry axis
of the loop using the approximation k2 ≪ 1 in the above expressions. Using

(z2 + ρ2 + a2)

z2 + (ρ− a)2
=

(2− k2)

2(1− k2)
= 1 +

k2

2
+

k4

2
+ . . . , (12a)

(z2 + ρ2 − a2)

z2 + (ρ− a)2
=

(2− k2)

2(1− k2)
−

a

2ρ

k2

(1− k2)

=
[

1 +
k2

2
+

k4

2
+ . . .

]

−
a

2ρ

[

k2 + k4 + . . .
]

(12b)

we can show that

2

k2

{

K(k)− E(k)
}

−K(k) =
π

16
k2 +

3π

64
k4 + . . . (13a)

=
(πa2)

[z2 + (ρ+ a)2]

ρ

4a

[

1 +
3aρ

[z2 + (ρ+ a)2]
+ . . .

]

, (13b)

K(k)−
(z2 + ρ2 − a2)

z2 + (ρ− a)2
E(k) =

[

−
3π

32
k4 + . . .

]

+
πa

4ρ

[

k2 +
3

4
k4 + . . .

]

=
(πa2)

[z2 + (ρ+ a)2]

[

1−
3

2

ρ(ρ− 2a)

[z2 + (ρ+ a)2]
+ . . .

]

, (13c)

K(k)−
(z2 + ρ2 + a2)

z2 + (ρ− a)2
E(k) = −

3π

32
k4 + . . .

= −
3

2

(πa2)ρ2

[z2 + (ρ+ a)2]2
+ . . . . (13d)

Using these approximations, which are appropriate for regions close to the axis (k2 ≪ 1,)
we have

A(r)
k
2
≪1

−−−→ φ̂
µ0

4π

I(πa2)ρ

[z2 + (ρ+ a)2]
3

2

[

1 +
3aρ

[z2 + (ρ+ a)2]

]

(14)

and

B(r)
k2≪1
−−−→ ẑ

µ0

4π

I(πa2)2

[z2 + (ρ+ a)2]
3

2

[

1−
3

2

ρ(ρ− 2a)

[z2 + (ρ+ a)2]

]

− ρ̂
µ0

4π

I(πa2)3ρz

[z2 + (ρ+ a)2]
5

2

. (15)
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