Homework No. 01 (2021 Spring)
 PHYS 420: ELECTRICITY AND MAGNETISM II

Department of Physics, Southern Illinois University-Carbondale
Due date: Wednesday, 2021 Jan 27, 2:00 PM

0 . Keywords: Motion of a charged particle in electric and magnetic field.
0 . Problems 1, 2, and 4 are to be submitted for assessment. Rest are for practice.

1. (30 points.) Motion of a charged particle of mass m and charge q in a uniform magnetic field \mathbf{B} is governed by

$$
\begin{equation*}
m \frac{d \mathbf{v}}{d t}=q \mathbf{v} \times \mathbf{B} \tag{1}
\end{equation*}
$$

Choose B along the z-axis and solve this vector differential equation to determine the position $\mathbf{x}(t)$ and velocity $\mathbf{v}(t)$ of the particle as a function of time, for initial conditions

$$
\begin{align*}
& \mathbf{x}(0)=0 \hat{\mathbf{i}}+0 \hat{\mathbf{j}}+0 \hat{\mathbf{k}} \tag{2a}\\
& \mathbf{v}(0)=0 \hat{\mathbf{i}}+v_{0} \hat{\mathbf{j}}+0 \hat{\mathbf{k}} \tag{2b}
\end{align*}
$$

Verify that the solution describes a circle of radius R with center at position $R \hat{\mathbf{i}}$. Find R. For the same initial velocity does an electron or a proton have a larger radii.
2. (30 points.) Motion of a charged particle of mass m and charge q in a uniform magnetic field \mathbf{B} and a uniform electric field \mathbf{E} is governed by

$$
\begin{equation*}
m \frac{d \mathbf{v}}{d t}=q \mathbf{E}+q \mathbf{v} \times \mathbf{B} \tag{3}
\end{equation*}
$$

Choose \mathbf{B} along the z-axis and \mathbf{E} along the y-axis,

$$
\begin{align*}
& \mathbf{B}=0 \hat{\mathbf{i}}+0 \hat{\mathbf{j}}+B \hat{\mathbf{k}} \tag{4a}\\
& \mathbf{E}=0 \hat{\mathbf{i}}+E \hat{\mathbf{j}}+0 \hat{\mathbf{k}} \tag{4b}
\end{align*}
$$

Solve this vector differential equation to determine the position $\mathbf{x}(t)$ and velocity $\mathbf{v}(t)$ of the particle as a function of time, for initial conditions

$$
\begin{align*}
& \mathbf{x}(0)=0 \hat{\mathbf{i}}+0 \hat{\mathbf{j}}+0 \hat{\mathbf{k}}, \tag{5a}\\
& \mathbf{v}(0)=0 \hat{\mathbf{i}}+0 \hat{\mathbf{j}}+0 \hat{\mathbf{k}} . \tag{5b}
\end{align*}
$$

Verify that the solution is a cycloid characterized by the equations

$$
\begin{align*}
x(t) & =R\left(\omega_{c} t-\sin \omega_{c} t\right) \tag{6a}\\
y(t) & =R\left(1-\cos \omega_{c} t\right) \tag{6b}
\end{align*}
$$

where

$$
\begin{equation*}
R=\frac{E}{B \omega_{c}}, \quad \omega_{c}=\frac{q B}{m} . \tag{7}
\end{equation*}
$$

The particle moves as though it were a point on the rim of a wheel of radius R perfectly rolling (without sliding or slipping) with angular speed ω_{c} along the x-axis. It satisfies the equation of a circle of radius R whose center ($v t, R, 0)$ travels along the x-direction at constant speed v,

$$
\begin{equation*}
(x-v t)^{2}+(y-R)^{2}=R^{2}, \tag{8}
\end{equation*}
$$

where $v=\omega_{c} R$.
3. (20 points.) (Based on Griffiths 4th ed. problem 5.45.)

A (hypothetical) stationary magnetic monopole q_{m} held fixed at the origin will have a magnetic field

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0}}{4 \pi} \frac{q_{m}}{r^{2}} \hat{\mathbf{r}}, \tag{9}
\end{equation*}
$$

because $\boldsymbol{\nabla} \cdot \mathbf{B} \neq 0$ anymore. Consider the motion of a particle with mass m and electric charge q_{e} in the field of this magnetic monopole.
(a) Draw the magnetic field lines of the stationary magnetic monopole.
(b) Using

$$
\begin{equation*}
\mathbf{F}=q_{e} \mathbf{v} \times \mathbf{B} \tag{10}
\end{equation*}
$$

derive the equation of motion for the electric charge to be

$$
\begin{equation*}
\frac{d \mathbf{v}}{d t}=\mathbf{v} \times \mathbf{r} \frac{\mu_{0}}{4 \pi} \frac{q_{e} q_{m}}{r^{3}} \frac{1}{m}, \tag{11}
\end{equation*}
$$

where \mathbf{v} is the velocity of the electric charge q_{e}.
(c) Recall that the motion of an electric charge in a uniform magnetic field implies circular (or helical) motion, which in turn implies that the speed $v=|\mathbf{v}|$ is a constant of motion. Show that the speed $v=|\mathbf{v}|$ is a constant of motion even for the motion of an electric charge in the field of a magnetic monopole. That is, show that

$$
\begin{equation*}
\frac{d v}{d t}=0 . \tag{12}
\end{equation*}
$$

(Hint: Show that $v^{2}=\mathbf{v} \cdot \mathbf{v}$ is a constant of motion. Use $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0$.) However, the motion is not circular. Nevertheless, it is exactly solvable and the orbit is unbounded and lies on a right circular half-cone with vertex at the monopole. The comments following Eq. (12) are for your information and need not be proved here.
4. (20 points.) The force $d \mathbf{F}$ on an infinitely small line element $d \mathbf{l}$ of wire, carrying steady current I, placed in a magnetic field \mathbf{B}, is

$$
\begin{equation*}
d \mathbf{F}=I d \mathbf{l} \times \mathbf{B} \tag{13}
\end{equation*}
$$

This involves the correspondence

$$
\begin{equation*}
q \mathbf{v} \rightarrow I d \mathbf{l} \tag{14}
\end{equation*}
$$

for the flow of charge, representing current, in the wire. Consider a wire segment of arbitrary shape (in the shape of a curve C) with one end at the origin and the other end at the tip of vector \mathbf{L}. The total force on the segment of wire is given by the line integral

$$
\begin{equation*}
\mathbf{F}=\int_{\mathbf{0}(\operatorname{path} C)}^{\mathbf{L}} I d \mathbf{l} \times \mathbf{B} \tag{15}
\end{equation*}
$$

Evaluate the total force on a closed loop of wire (of arbitrary shape and carrying steady current I) when it is placed in a uniform magnetic field? Check your result for a loop of wire in the shape of a square in a uniform magnetic field.

