Homework No. 03 (2021 Spring)
PHYS 420: ELECTRICITY AND MAGNETISM II
Department of Physics, Southern Illinois University-Carbondale
Due date: Friday, 2021 Feb 12, 2:00 PM

0. Keywords: Magnetostatics (Chap.5, Griffiths 4th edition), Magnetic vector potential, Biot-Savart law (Sec. 5.2, Griffiths 4th edition).

0 . Problems 2 and 4 are to be submitted for assessment. Rest are for practice.

1. (20 points.) The magnetic field $\mathbf{B}(\mathbf{r})$ is given in terms of the magnetic vector potential $\mathbf{A}(\mathbf{r})$ by the relation

$$
\begin{equation*}
\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A} . \tag{1}
\end{equation*}
$$

Find a magnetic vector potential (up to a gauge) for the uniform magnetic field

$$
\begin{equation*}
\mathbf{B}=B \hat{\mathbf{z}} . \tag{2}
\end{equation*}
$$

Then, find another solution for \mathbf{A} (up to a gauge) that is different from your original solution by more than just a constant. If you designed an experiment to measure A, which one of your solution will the experiment measure?
2. (20 points.) A homogeneous magnetic field \mathbf{B} is characterized by the vector potential

$$
\begin{equation*}
\mathbf{A}=\frac{1}{2} \mathbf{B} \times \mathbf{r} . \tag{3}
\end{equation*}
$$

(a) Evaluate $\boldsymbol{\nabla} \times \mathbf{A}$.
(b) Verify that this construction satisfies the radiation gauge by showing that

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{A}=0 \tag{4}
\end{equation*}
$$

(c) Is this construction unique?
3. (20 points.) Is it correct to conclude that

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot(\mathbf{r} \times \mathbf{A})=-\mathbf{r} \cdot(\boldsymbol{\nabla} \times \mathbf{A}) \tag{5}
\end{equation*}
$$

where \mathbf{A} is a vector dependent on \mathbf{r} ? Explain your reasoning.
4. (50 points.) (Based on Problem 5.8, Griffiths 4th edition.)

The magnetic field at position $\mathbf{r}=(x, y, z)$ due to a finite wire segment of length $2 L$
carrying a steady current I, with the caveat that it is unrealistic (why?), placed on the z-axis with its end points at $(0,0, L)$ and $(0,0,-L)$, is

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\hat{\phi} \frac{\mu_{0} I}{4 \pi} \frac{1}{\sqrt{x^{2}+y^{2}}}\left[\frac{z+L}{\sqrt{x^{2}+y^{2}+(z+L)^{2}}}-\frac{z-L}{\sqrt{x^{2}+y^{2}+(z-L)^{2}}}\right] \tag{6}
\end{equation*}
$$

where $\hat{\boldsymbol{\phi}}=(-\sin \phi \hat{\mathbf{i}}+\cos \phi \hat{\mathbf{j}})=(-y \hat{\mathbf{i}}+x \hat{\mathbf{j}}) / \sqrt{x^{2}+y^{2}}$.
(a) Show that by taking the limit $L \rightarrow \infty$ we obtain the magnetic field near a long straight wire carrying a steady current I,

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\hat{\boldsymbol{\phi}} \frac{\mu_{0} I}{2 \pi \rho} \tag{7}
\end{equation*}
$$

where $\rho=\sqrt{x^{2}+y^{2}}$ is the perpendicular distance from the wire.
(b) Show that the magnetic field on a line bisecting the wire segment is given by

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\hat{\boldsymbol{\phi}} \frac{\mu_{0} I}{2 \pi \rho} \frac{L}{\sqrt{\rho^{2}+L^{2}}} \tag{8}
\end{equation*}
$$

(c) Find the magnetic field at the center of a square loop, which carries a steady current I. Let $2 L$ be the length of a side, ρ be the distance from center to side, and $R=\sqrt{\rho^{2}+L^{2}}$ be the distance from center to a corner. (Caution: Notation differs from Griffiths.) You should obtain

$$
\begin{equation*}
B=\frac{\mu_{0} I}{2 R} \frac{4}{\pi} \tan \frac{\pi}{4} \tag{9}
\end{equation*}
$$

(d) Show that the magnetic field at the center of a regular n-sided polygon, carrying a steady current I is

$$
\begin{equation*}
B=\frac{\mu_{0} I}{2 R} \frac{n}{\pi} \tan \frac{\pi}{n} \tag{10}
\end{equation*}
$$

where R is the distance from center to a corner of the polygon.
(e) Show that the magnetic field at the center of a circular loop of radius R,

$$
\begin{equation*}
B=\frac{\mu_{0} I}{2 R} \tag{11}
\end{equation*}
$$

is obtained in the limit $n \rightarrow \infty$.
5. (20 points.) The vector potential for a straight wire of infinite extent carrying a steady current I is

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\hat{\mathbf{z}} \frac{\mu_{0} I}{2 \pi} \ln \frac{2 L}{\rho} \tag{12}
\end{equation*}
$$

with $L \rightarrow \infty$ understood in the equation. The magnetic field around the wire is given by

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\hat{\boldsymbol{\phi}} \frac{\mu_{0} I}{2 \pi \rho} \tag{13}
\end{equation*}
$$

(a) Draw the field lines for the above vector potential and the magnetic field. Be precise.
(b) Evaluate $\boldsymbol{\nabla} \times \mathbf{A}$.
6. (20 points.) The magnetic field for a straight wire of infinite extent carrying a steady current I is given by

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\hat{\phi} \frac{\mu_{0} I}{2 \pi \rho} \tag{14}
\end{equation*}
$$

Verify that

$$
\begin{equation*}
\nabla \cdot \mathbf{B}=0 \tag{15}
\end{equation*}
$$

everywhere. In particular, investigate if the magnetic field is divergenceless on the wire, where $\rho=0$. Next, evaluate

$$
\begin{equation*}
\nabla \times \mathbf{B} \tag{16}
\end{equation*}
$$

everywhere. Thus, check if the magnetic field due to a straight current carrying wire satisfies the two Maxwell equations relevant for magnetostatics.

