Homework No. 05 (2021 Spring)
 PHYS 420: ELECTRICITY AND MAGNETISM II

Department of Physics, Southern Illinois University-Carbondale Due date: Monday, 2021 Mar 8, 2:00 PM
0. (0 points.) Keywords for finding resource materials: Complete elliptic integrals; Magnetic vector potential and magnetic field for a circular loop carrying a steady current.

0 . Problems 3 and 4 are to be submitted for assessment. Rest are for practice.

1. (0 points.) Complete elliptic integrals of the first and second kind can be defined using the integral representations,

$$
\begin{align*}
& K(k)=\int_{0}^{\frac{\pi}{2}} d \psi \frac{1}{\sqrt{1-k^{2} \sin ^{2} \psi}} \tag{1a}\\
& E(k)=\int_{0}^{\frac{\pi}{2}} d \psi \sqrt{1-k^{2} \sin ^{2} \psi} \tag{1b}
\end{align*}
$$

respectively.
2. ($\mathbf{2 0}$ points.) Verify that

$$
\begin{align*}
K(0) & =\frac{\pi}{2} \tag{2a}\\
E(0) & =\frac{\pi}{2} \tag{2b}
\end{align*}
$$

Then, verify that

$$
\begin{equation*}
E(1)=1 \tag{3}
\end{equation*}
$$

Note that

$$
\begin{equation*}
K(1)=\int_{0}^{\frac{\pi}{2}} \frac{d \psi}{\cos \psi} \tag{4}
\end{equation*}
$$

is devergent. To see the nature of this divergence we introduce a cutoff parameter $\delta>0$ and write

$$
\begin{equation*}
K(1)=\int_{0}^{\frac{\pi}{2}-\delta} \frac{d \psi}{\cos \psi} \tag{5}
\end{equation*}
$$

Evaluate the integral, (using the identity $d(\sec \psi+\tan \psi) / d \psi=\sec \psi(\sec \psi+\tan \psi)$,) and show that

$$
\begin{equation*}
K(1) \sim \ln 2-\ln \delta-\frac{\delta^{2}}{12}+\mathcal{O}(\delta)^{4} \tag{6}
\end{equation*}
$$

has logarithmic divergence. Using Mathematica (or another graphing tool) plot $K(k)$ and $E(k)$ as functions of k for $0 \leq k<1$.
3. (20 points.) The complete elliptic integrals have the power series expansions

$$
\begin{align*}
& K(k)=\frac{\pi}{2} \sum_{n=0}^{\infty}\left[\frac{(2 n)!}{2^{2 n}(n!)^{2}}\right]^{2} k^{2 n}=\frac{\pi}{2}\left[1+\frac{1}{4} k^{2}+\frac{9}{64} k^{4}+\ldots\right] \tag{7a}\\
& E(k)=\frac{\pi}{2} \sum_{n=0}^{\infty}\left[\frac{(2 n)!}{2^{2 n}(n!)^{2}}\right]^{2} \frac{k^{2 n}}{(1-2 n)}=\frac{\pi}{2}\left[1-\frac{1}{4} k^{2}-\frac{3}{64} k^{4}-\ldots\right] . \tag{7b}
\end{align*}
$$

The leading order contribution in the power series expansions are from $K(0)$ and $E(0)$. Evaluate the next-to-leading order contributions in the above series expansions by expanding the radical in Eqs.(1) as a series. Use

$$
\begin{align*}
& \frac{1}{\sqrt{1-x}}=1+\frac{1}{2} x+\ldots \tag{8a}\\
& \sqrt{1-x}=1-\frac{1}{2} x+\ldots \tag{8b}
\end{align*}
$$

4. (20 points.) A circular loop of radius a carrying a steady current I with the loop chosen to be in the $x-y$ plane with the origin at the center of the loop has the the magnetic vector potential given by

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\hat{\phi} \frac{\mu_{0} I}{4 \pi} \frac{4 a}{\sqrt{z^{2}+(\rho+a)^{2}}}\left[\frac{2}{k^{2}}\{K(k)-E(k)\}-K(k)\right] \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
k^{2}=\frac{4 a \rho}{z^{2}+(\rho+a)^{2}} . \tag{10}
\end{equation*}
$$

The magnetic field is

$$
\begin{align*}
\mathbf{B}(\mathbf{r})= & \hat{\mathbf{z}} \frac{\mu_{0} I}{4 \pi} \frac{2}{\sqrt{z^{2}+(\rho+a)^{2}}}\left[K(k)-\frac{\left(z^{2}+\rho^{2}-a^{2}\right)}{z^{2}+(\rho-a)^{2}} E(k)\right] \\
& -\hat{\boldsymbol{\rho}} \frac{\mu_{0} I}{4 \pi} \frac{2}{\sqrt{z^{2}+(\rho+a)^{2}}} \frac{z}{\rho}\left[K(k)-\frac{\left(z^{2}+\rho^{2}+a^{2}\right)}{z^{2}+(\rho-a)^{2}} E(k)\right] . \tag{11}
\end{align*}
$$

Evaluate the vector potential and the magnetic field on the symmetry axis of the loop, obtained by setting $\rho \rightarrow 0$ in the above expressions.
Hint: For the $\hat{\boldsymbol{\rho}}$ direction keep terms to order k^{4} for elliptic functions. Further, observe that

$$
\begin{equation*}
\frac{\left(z^{2}+\rho^{2}+a^{2}\right)}{z^{2}+(\rho-a)^{2}}=\frac{\left(2-k^{2}\right)}{2\left(1-k^{2}\right)} \tag{12}
\end{equation*}
$$

