Homework No. 07 (2021 Spring)
 PHYS 420: ELECTRICITY AND MAGNETISM II
 Department of Physics, Southern Illinois University-Carbondale
 Due date: Friday, 2021 Mar 26, 2:00 PM

0. (0 points.) Keywords for finding resource materials: Special relativity, Lorentz transformation, time dilation, length contraction, relativistic velocity addition formula.

0 . Problems 1, 2, and 3 are to be submitted for assessment. Rest are for practice.

1. (20 points.) The Lorentz factor

$$
\begin{equation*}
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}, \quad \beta=\frac{v}{c} . \tag{1}
\end{equation*}
$$

(a) Evaluate γ for $v=30 \mathrm{~m} / \mathrm{s}$ (~ 70 miles/hour).
(b) Evaluate γ for $v=3 c / 5$.
2. (20 points.) Lorentz transformation describing a boost in the x-direction is obtained using the matrix

$$
L=\left(\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \tag{2}\\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(a) Show that the determinant of the matrix L is 1 .
(b) Determine L^{-1}.
3. (60 points.) The Poincaré formula for the addition of (parallel) velocities is

$$
\begin{equation*}
v=\frac{v_{a}+v_{b}}{1+\frac{v_{a} v_{b}}{c^{2}}}, \tag{3}
\end{equation*}
$$

where v_{a} and v_{b} are velocities and c is speed of light in vacuum. Jerzy Kocik, from the department of Mathematics in SIUC, has invented a geometric diagram that allows one to visualize the Poincaré formula. (Refer [1].) An interactive applet for exploring velocity addition is available at Kocik's web page [2]. (For the following assume that the Poincaré formula holds for all speeds, subluminal $\left(v_{i}<c\right)$, superluminal $\left(v_{i}>c\right)$, and speed of light.)
(a) Analyse what is obtained if you add two subluminal speeds?
(b) Analyse what is obtained if you add a subluminal speed to speed of light?
(c) Analyse what is obtained if you add a subluminal speed to a superluminal speed?
(d) Analyse what is obtained if you add speed of light to another speed of light?
(e) Analyse what is obtained if you add a superluminal speed to speed of light?
(f) Analyse what is obtained if you add two superluminal speeds?
4. (30 points.) Let

$$
\begin{equation*}
\tanh \theta=\beta \tag{4}
\end{equation*}
$$

where $\beta=v / c$. Addition of (parallel) velocities in terms of the parameter θ obeys the arithmatic addition

$$
\begin{equation*}
\theta=\theta_{a}+\theta_{b} . \tag{5}
\end{equation*}
$$

(a) Invert the expression in Eq. (4) to find the explicit form of θ in terms of β as a logarithm.
(b) Show that Eq. (5) leads to the relation

$$
\begin{equation*}
\left(\frac{1+\beta}{1-\beta}\right)=\left(\frac{1+\beta_{a}}{1-\beta_{a}}\right)\left(\frac{1+\beta_{b}}{1-\beta_{b}}\right) . \tag{6}
\end{equation*}
$$

(c) Using Eq. (6) derive the Poincaré formula for the addition of (parallel) velocities.

References

[1] J. Kocik. Geometric diagram for relativistic addition of velocities. Am. J. Phys., 80:737-739, August 2012.
[2] J. Kocik. An interactive applet for exploring relativistic velocity addition. http://www.mathoutlet.com/2016/08/relativistic-composition-of-velocities.html.

