Homework No. 09 (2021 Spring)
 PHYS 420: ELECTRICITY AND MAGNETISM II
 Department of Physics, Southern Illinois University-Carbondale
 Due date: Monday, 2021 Apr 12, 2:00 PM

0. (0 points.) Keywords for finding resource materials: Electrodynamics of moving bodies; Retarded time; Delta functions.

0 . Problems 1 and 2 are to be submitted for assessment. Rest are for practice.

1. (20 points.) Using the identity

$$
\begin{equation*}
\delta(F(x))=\sum_{r} \frac{\delta\left(x-a_{r}\right)}{\left.\left|\frac{d F}{d x}\right|_{x=a_{r}} \right\rvert\,} \tag{1}
\end{equation*}
$$

where the sum on r runs over the roots a_{r} of the equation $F(x)=0$, evaluate

$$
\begin{equation*}
\delta\left(a x^{2}+b x+c\right) . \tag{2}
\end{equation*}
$$

2. ($\mathbf{2 0}$ points.) Using the identity

$$
\begin{equation*}
\delta(F(x))=\sum_{r} \frac{\delta\left(x-a_{r}\right)}{\left.\left|\frac{d F}{d x}\right|_{x=a_{r}} \right\rvert\,} \tag{3}
\end{equation*}
$$

where the sum on r runs over the roots a_{r} of the equation $F(x)=0$, evaluate

$$
\begin{equation*}
\delta\left(x^{3}-6 x^{2}+11 x-6\right) \tag{4}
\end{equation*}
$$

3. (20 points.) The electric and magnetic field generated by a particle with charge q moving along the z axis with speed $v, \beta=v / c$, can be expressed in the form

$$
\begin{align*}
\mathbf{E}(\mathbf{r}, t) & =\frac{q}{4 \pi \varepsilon_{0}} \frac{[x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+(z-v t) \hat{\mathbf{k}}]}{\left(x^{2}+y^{2}\right)} \frac{\left(x^{2}+y^{2}\right)\left(1-\beta^{2}\right)}{\left[\left(x^{2}+y^{2}\right)\left(1-\beta^{2}\right)+(z-v t)^{2}\right]^{\frac{3}{2}}}, \tag{5a}\\
c \mathbf{B}(\mathbf{r}, t) & =\boldsymbol{\beta} \times \mathbf{E}(\mathbf{r}, t) . \tag{5b}
\end{align*}
$$

(a) Consider the distribution

$$
\begin{equation*}
\delta(x)=\lim _{\epsilon \rightarrow 0} \frac{1}{2} \frac{\epsilon}{\left(x^{2}+\epsilon\right)^{\frac{3}{2}}} . \tag{6}
\end{equation*}
$$

Show that

$$
\delta(x)\left\{\begin{array}{lll}
\rightarrow \frac{1}{2 \sqrt{\epsilon}} \rightarrow \infty, & \text { if } & x=0 \tag{7}\\
\rightarrow \frac{\epsilon}{2 x^{3}} \rightarrow 0, & \text { if } & x \neq 0
\end{array}\right.
$$

Further, show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \delta(x)=1 \tag{8}
\end{equation*}
$$

(b) Thus, verify that the electric and magnetic field of a charge approaching the speed of light can be expressed in the form

$$
\begin{align*}
\mathbf{E}(\mathbf{r}, t) & =\frac{2 q}{4 \pi \varepsilon_{0}} \frac{\hat{\boldsymbol{\rho}}}{\rho} \delta(z-c t) \tag{9a}\\
\mathbf{B}(\mathbf{r}, t) & =\frac{1}{c} \frac{2 q}{4 \pi \varepsilon_{0}} \frac{\hat{\boldsymbol{\phi}}}{\rho} \delta(z-c t)=2 c q \frac{\mu_{0}}{4 \pi} \frac{\hat{\boldsymbol{\phi}}}{\rho} \delta(z-c t) \tag{9b}
\end{align*}
$$

where $\boldsymbol{\rho}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}$ and $\rho=\sqrt{x^{2}+y^{2}}$. These fields are confined on the $z=c t$ plane moving with speed c. Illustrate this field configuration using a diagram.

