Homework No. 11 (2021 Spring)
 PHYS 420: ELECTRICITY AND MAGNETISM II
 Department of Physics, Southern Illinois University-Carbondale Due date: Wednesday, 2021 Apr 28, 2:00 PM

0. (0 points.) Keywords for finding resource materials: Radiation, simple antenna, loop antenna.
1. (20 points.) The magnetic field associated to radiation fields is given by

$$
\begin{equation*}
c \mathbf{B}(\mathbf{r}, t)=-\hat{\mathbf{r}} \times \frac{\mu_{0}}{4 \pi} \frac{1}{r} \int d^{3} r^{\prime}\left\{\frac{\partial}{\partial t^{\prime}} \mathbf{J}\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right\}_{t^{\prime}=t_{r}} \tag{1}
\end{equation*}
$$

where the contribution to the field comes at the retarded time

$$
\begin{equation*}
t_{r}=t-\frac{r}{c}+\hat{\mathbf{r}} \cdot \frac{\mathbf{r}^{\prime}}{c} \tag{2}
\end{equation*}
$$

The associated electric field is given by

$$
\begin{equation*}
\mathbf{E}(\mathbf{r}, t)=-\hat{\mathbf{r}} \times c \mathbf{B}(\mathbf{r}, t) \tag{3}
\end{equation*}
$$

and satisfies

$$
\begin{equation*}
c \mathbf{B}(\mathbf{r}, t)=\hat{\mathbf{r}} \times \mathbf{E}(\mathbf{r}, t) \tag{4}
\end{equation*}
$$

Starting from the statement of conservation of electromagnetic energy density

$$
\begin{equation*}
\frac{\partial U}{\partial t}+\boldsymbol{\nabla} \cdot \mathbf{S}+\mathbf{J} \cdot \mathbf{E}=0 \tag{5}
\end{equation*}
$$

where the electromagnetic energy density

$$
\begin{equation*}
U=\frac{1}{2} \varepsilon_{0} E^{2}+\frac{1}{2} \frac{B^{2}}{\mu_{0}} \tag{6}
\end{equation*}
$$

the flux of electromagnetic energy density (the Poynting vector)

$$
\begin{equation*}
\mathbf{S}=\mathbf{E} \times \mathbf{H} \tag{7}
\end{equation*}
$$

$\mathbf{B}=\mu_{0} \mathbf{H}$; integrating over an infinitely large sphere centered about the sources; using divergence theorem to rewrite the second term; presuming the sources to be zero in the radiation zone; we deduce the power $d P$ radiated into the solid angle $d \Omega$ to be

$$
\begin{equation*}
d P=\lim _{r \rightarrow \infty} r^{2} d \Omega \hat{\mathbf{r}} \cdot \mathbf{S} \tag{8}
\end{equation*}
$$

(a) Using $\hat{\mathbf{r}} \cdot \mathbf{S}=\hat{\mathbf{r}} \cdot(\mathbf{E} \times \mathbf{H})=(\hat{\mathbf{r}} \times(\mathbf{E}) \cdot \mathbf{H})$ show that this leads to the expression

$$
\begin{equation*}
\frac{\partial P}{\partial \Omega}=\lim _{r \rightarrow \infty} \frac{1}{4 \pi}\left(\frac{\mu_{0} c}{4 \pi}\right)\left|\frac{\mathbf{B}(\mathbf{r}, t)}{\frac{\mu_{0}}{4 \pi} \frac{1}{r}}\right|^{2} \tag{9}
\end{equation*}
$$

Verify that $B /\left(\frac{\mu_{0}}{4 \pi} \frac{1}{r}\right)$ has the dimensions of current. Thus, conclude that

$$
\begin{equation*}
\frac{\mu_{0} c}{4 \pi}=\frac{1}{4 \pi} \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \tag{10}
\end{equation*}
$$

has the dimensions of resistance. Quantum phenomena in electromagnetism is characterized by the Planck's constant h and the associated fine-structure constant

$$
\begin{equation*}
\alpha=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{\hbar c}, \tag{11}
\end{equation*}
$$

a dimensionless physical constant. Verify that

$$
\begin{equation*}
\frac{\mu_{0} c}{4 \pi}=\frac{1}{4 \pi} \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=\alpha \frac{\hbar}{e^{2}}=29.9792458 \Omega \tag{12}
\end{equation*}
$$

(b) A simple antenna consists of an infinitely thin conductor of length L carrying a time-dependent current. Let the conductor be centered at the origin and placed on the z axis such that

$$
\begin{equation*}
\mathbf{J}\left(\mathbf{r}^{\prime}, t^{\prime}\right)=\hat{\mathbf{z}} I_{0} \sin \omega_{0} t \delta\left(x^{\prime}\right) \delta\left(y^{\prime}\right) \theta\left(-L<2 z^{\prime}<L\right) \tag{13}
\end{equation*}
$$

The function θ equals 1 when the argument is a true statement, and zero otherwise. Show that

$$
\begin{equation*}
\int d^{3} r^{\prime}\left\{\frac{\partial}{\partial t^{\prime}} \mathbf{J}\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right\}_{t^{\prime}=t_{r}}=\hat{\mathbf{z}} \omega_{0} I_{0} \cos \left(\omega_{0} t-2 \pi \frac{r}{\lambda_{0}}\right) \frac{\sin \left(\pi \frac{L}{\lambda_{0}} \cos \theta\right)}{\frac{\pi}{\lambda_{0}} \cos \theta} \tag{14}
\end{equation*}
$$

where $\omega_{0} / c=2 \pi / \lambda_{0}$. Then, evaluate the expression for the magnetic field.
(c) Using Eq. (9) show that

$$
\begin{equation*}
\frac{\partial P}{\partial \Omega}=P_{0} \frac{\sin ^{2} \theta}{\pi} \cos ^{2}\left(\omega_{0} t-2 \pi \frac{r}{\lambda_{0}}\right) \frac{\sin ^{2}\left(\pi \frac{L}{\lambda_{0}} \cos \theta\right)}{\cos ^{2} \theta} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{0}=\left(\frac{\mu_{0} c}{4 \pi}\right) I_{0}^{2} . \tag{16}
\end{equation*}
$$

Evaluate the average power radiated into a solid angle using

$$
\begin{equation*}
\left\langle\frac{\partial P}{\partial \Omega}\right\rangle=\frac{1}{T} \int_{0}^{T} d t \frac{\partial P}{\partial \Omega} . \tag{17}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\left\langle\frac{\partial P}{\partial \Omega}\right\rangle=P_{0} \frac{\sin ^{2} \theta}{2 \pi} \frac{\sin ^{2}\left(\pi \frac{L}{\lambda_{0}} \cos \theta\right)}{\cos ^{2} \theta} \tag{18}
\end{equation*}
$$

Hint: Use the integral

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T} d t \cos ^{2}\left(\omega_{0} t+\delta\right)=\frac{1}{2} \tag{19}
\end{equation*}
$$

(d) Plot

$$
\begin{equation*}
g(\theta)=\sin ^{2} \theta \frac{\sin ^{2}\left(\pi \frac{L}{\lambda_{0}} \cos \theta\right)}{\cos ^{2} \theta} \tag{20}
\end{equation*}
$$

as a function of θ for $L=0.1 \lambda, 0.5 \lambda, 1.0 \lambda, 2.0 \lambda, 3.0 \lambda, 5.0 \lambda$. Thus, discuss the angular distribution of the radiation. Note that the radiated power is zero when

$$
\begin{equation*}
\theta=\cos ^{-1}\left(n \frac{\lambda_{0}}{L}\right), \quad n=0, \pm 1, \pm 2, \ldots \tag{21}
\end{equation*}
$$

Thus, the radiation pattern has a single lobe for $L<\lambda_{0}$. For $L>\lambda_{0}$ the radiation pattern exhibits a primary lobe bounded by $n= \pm 1$ and secondary lobes on either side of the primary lobe. Determine the number of lobes for $L=3 \lambda_{0}$. Using the area under $g(\theta)$ in your plot for $L=3 \lambda_{0}$ qualitatively estimate the percentage of power radiated into the primary lobe.

