Final Exam (2021 Spring)
 PHYS 510: CLASSICAL MECHANICS
 Department of Physics, Southern Illinois University-Carbondale

Date: 2021 May 3

1. (20 points.) Kepler problem is described by the potential energy

$$
\begin{equation*}
U(r)=-\frac{\alpha}{r} \tag{1}
\end{equation*}
$$

and the corresponding Lagrangian

$$
\begin{equation*}
L(\mathbf{r}, \mathbf{v})=\frac{1}{2} \mu v^{2}+\frac{\alpha}{r} . \tag{2}
\end{equation*}
$$

For the case when the total energy E is negative,

$$
\begin{equation*}
-\frac{\alpha}{2 r_{0}}<E<0, \quad r_{0}=\frac{L_{z}^{2}}{\mu \alpha} \tag{3}
\end{equation*}
$$

where L_{z} is the angular momentum, the motion is described by an ellipse,

$$
\begin{equation*}
r(\phi)=\frac{r_{0}}{1+e \cos \left(\phi-\phi_{0}\right)}, \quad e=\sqrt{1+\frac{E}{\left(\alpha / 2 r_{0}\right)}} . \tag{4}
\end{equation*}
$$

Perihelion is the point in the orbit of a planet when it is closest to the Sun. This corresponds to $\phi=\phi_{0}$. The precession of the perihelion is suitably defined in terms of the angular displacement $\Delta \phi$ of the perihelion during one revolution,

$$
\begin{equation*}
\Delta \phi=2\left[\int_{r_{\min }}^{r_{\max }} d \phi\right]-2 \pi \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{\min }=\frac{r_{0}}{1+e} \tag{6}
\end{equation*}
$$

is the perihelion, when the planet is closest to Sun, and

$$
\begin{equation*}
r_{\max }=\frac{r_{0}}{1-e} \tag{7}
\end{equation*}
$$

is the aphelion, corresponding to $\phi=\phi_{0}+\pi$, when the planet is farthest from Sun. For the Kepler problem derive the relation

$$
\begin{equation*}
d \phi=\frac{r_{0} d r}{r^{2}} \frac{1}{\sqrt{e^{2}-\left(1-\frac{r_{0}}{r}\right)^{2}}} . \tag{8}
\end{equation*}
$$

Show that the precession of perihelion is zero for the Kepler problem.
2. ($\mathbf{2 0}$ points.) Time dilates. That is,

$$
\begin{equation*}
T=T_{0} \gamma, \quad \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{9}
\end{equation*}
$$

where T_{0} is the proper time measured in the instantaneous rest frame of the clock measuring T_{0} and T is the time measured by a clock moving with velocity v relative to the clock measuring proper time. Similarly, show that (for $\mathbf{v} \| \mathbf{a}$)

$$
\begin{equation*}
|\mathbf{a}|=\frac{\left|\mathbf{a}_{0}\right|}{\gamma^{3}} \tag{10}
\end{equation*}
$$

where $\left|\mathbf{a}_{0}\right|$ is the proper acceleration measured in the instantaneous rest frame of the particle. Derive the equation for the trajectory of a particle moving in a straight line (along the z axis) with constant proper acceleration, after starting from rest from the point $z=c^{2} /\left|\mathbf{a}_{0}\right|$ at time $t=0$.

