Midterm Exam No. 01 (2021 Spring)
 PHYS 510: CLASSICAL MECHANICS
 Department of Physics, Southern Illinois University-Carbondale

Date: 2021 Mar 2

1. ($\mathbf{2 0}$ points.) Evaluate the functional derivative

$$
\begin{equation*}
\frac{\delta F[u]}{\delta u(x)} \tag{1}
\end{equation*}
$$

of the following functional,

$$
\begin{equation*}
F[u]=\int_{a}^{b} d x \frac{1}{\sqrt{1+\left(\frac{d u}{d x}\right)^{2}}} \tag{2}
\end{equation*}
$$

assuming no variation at the end points.
2. ($\mathbf{2 0}$ points.) Evaluate the functional derivative

$$
\begin{equation*}
\frac{\delta F[u]}{\delta u(x)} \tag{3}
\end{equation*}
$$

of the following functional,

$$
\begin{equation*}
F[u]=\int_{a}^{b} d x \sqrt{1+\frac{d u}{d x}+\frac{d^{3} u}{d x^{3}}}, \tag{4}
\end{equation*}
$$

assuming no variation at the end points.
3. (20 points.) Prove the intuitively obvious statement that the curve of shortest distance going through two points on a plane, the geodesics of a plane, are straight lines passing through the two points.

