Homework No. 01 (2021 Spring)
PHYS 510: CLASSICAL MECHANICS
Department of Physics, Southern Illinois University-Carbondale
Due date: Tuesday, 2021 Jan 26, 9.30am

1. ($\mathbf{2 0}$ points.) A simple pendulum consists of a particle of mass m suspended by a massless rod of length l in a uniform gravitational field g.
(a) Identify the two forces acting on the pendulum to be the force of gravity mg and the force of tension \mathbf{T}. Thus, deduce the Newton equation of motion to be

$$
\begin{equation*}
m \mathbf{a}=m \mathbf{g}+\mathbf{T} \tag{1}
\end{equation*}
$$

where \mathbf{a} is acceleration of mass m. Starting from Eq. (1) derive the equation of motion for the simple pendulum

$$
\begin{equation*}
\frac{d^{2} \phi}{d t^{2}}=-\omega_{0}^{2} \sin \phi \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{0}=\frac{2 \pi}{T_{0}}=\sqrt{\frac{g}{l}} . \tag{3}
\end{equation*}
$$

(b) Starting from Eq. (2) derive the statement of conservation of energy for this system,

$$
\begin{equation*}
\frac{1}{2} m l^{2} \dot{\phi}^{2}-m g l \cos \phi=\text { constant } \tag{4}
\end{equation*}
$$

Hint: Multiply Eq. (2) by $\dot{\phi}$ and express the equation as a total derivative with respect to time.
(c) For initial conditions $\phi(0)=\phi_{0}$ and $\dot{\phi}(0)=0$ show that

$$
\begin{equation*}
\frac{1}{2} m l^{2} \dot{\phi}^{2}-m g l \cos \phi=-m g l \cos \phi_{0} \tag{5}
\end{equation*}
$$

Thus, derive

$$
\begin{equation*}
\frac{d t}{T_{0}}=\frac{1}{2 \pi} \frac{d \phi}{\sqrt{2\left(\cos \phi-\cos \phi_{0}\right)}} \tag{6}
\end{equation*}
$$

where $T_{0}=2 \pi \sqrt{l / g}$.
(d) The time period of oscillations of the simple pendulum is equal to four times the time taken between $\phi=0$ and $\phi=\phi_{0}$. Thus, show that

$$
\begin{align*}
T & =4 \frac{T_{0}}{2 \pi} \int_{0}^{\phi_{0}} \frac{d \phi}{\sqrt{2\left(\cos \phi-\cos \phi_{0}\right)}} \tag{7}\\
& =\frac{T_{0}}{\pi} \int_{0}^{\phi_{0}} \frac{d \phi}{\sqrt{\sin ^{2} \frac{\phi_{0}}{2}-\sin ^{2} \frac{\phi}{2}}} \tag{8}
\end{align*}
$$

Then, substitute $\sin \theta=\sin (\phi / 2) / \sin \left(\phi_{0} / 2\right)$ to determine the period of oscillations of the simple pendulum as a function of the amplitude of oscillations ϕ_{0} to be

$$
\begin{equation*}
T=T_{0} \frac{2}{\pi} K\left(\sin \frac{\phi_{0}}{2}\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
K(k)=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}} \tag{10}
\end{equation*}
$$

is the complete elliptic integral of the first kind.
(e) Using the power series expansion

$$
\begin{equation*}
K(k)=\frac{\pi}{2} \sum_{n=0}^{\infty}\left[\frac{(2 n)!}{2^{2 n}(n!)^{2}}\right]^{2} k^{2 n} \tag{11}
\end{equation*}
$$

show that for small oscillations $\left(\phi_{0} / 2 \ll 1\right)$

$$
\begin{equation*}
T=T_{0}\left[1+\frac{\phi_{0}^{2}}{16}+\ldots\right] \tag{12}
\end{equation*}
$$

(f) Estimate the percentage error made in the approximation $T \sim T_{0}$ for $\phi_{0} \sim 60^{\circ}$.
(g) Plot the time period T of Eq. (9) as a function of ϕ_{0}. What can you conclude about the time period for $\phi_{0}=\pi$?

