Homework No. 04 (2021 Spring)
 PHYS 510: CLASSICAL MECHANICS
 Department of Physics, Southern Illinois University-Carbondale Due date: Tuesday, 2021 Feb 16, 9.30am

1. (20 points.) Fermat's principle in ray optics states that a ray of light takes the path of least time between two given points. The speed of light in a medium is given in terms of the refractive index

$$
\begin{equation*}
n=\frac{c}{v} \tag{1}
\end{equation*}
$$

of the medium, where c is the speed of light in vacuum and v is the speed of light in the medium. Consider a ray of light traversing a path from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ in a plane of fixed z.

Figure 1: Problem 1.
(a) Show that the time taken to travel an infinitesimal distance $d s$ is given by

$$
\begin{equation*}
d t=\frac{d s}{v}=\frac{n d s}{c}, \tag{2}
\end{equation*}
$$

where $d s$ in a plane is characterized by the infinitesimal statement

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2} \tag{3}
\end{equation*}
$$

(b) Fermat's principle states that the path traversed by a ray of light from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ is the extremal of the functional

$$
\begin{equation*}
T[y]=\frac{1}{c} \int_{\left(x_{1}, y_{1}\right)}^{\left(x_{2}, y_{2}\right)} n d s=\frac{1}{c} \int_{x_{1}}^{x_{2}} d x n(x) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} . \tag{4}
\end{equation*}
$$

(c) Since the ray of light passes through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, we do not consider variations at these (end) points. Thus, show that

$$
\begin{equation*}
\frac{\delta T[y]}{\delta y(x)}=-\frac{d}{d x}\left[\frac{n(x) \frac{d y}{d x}}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}}\right] \tag{5}
\end{equation*}
$$

(d) Using Fermat's principle show that the differential equation for the path $y(x)$ traversed by the ray of light is

$$
\begin{equation*}
\frac{n(x) \frac{d y}{d x}}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}}=n_{0} \tag{6}
\end{equation*}
$$

where n_{0} is a constant. Show that the above equation can be rewritten in the form

$$
\begin{equation*}
\frac{d y}{d x}=\frac{n_{0}}{\sqrt{n(x)^{2}-n_{0}^{2}}} \tag{7}
\end{equation*}
$$

(e) Let us consider a medium with refractive index $\left(x_{1}=a\right)$

$$
n(x)= \begin{cases}\frac{a}{x}, & 0<x<a \tag{8}\\ 1, & a<x\end{cases}
$$

Solve the corresponding differential equation to obtain

$$
\begin{equation*}
y(x)-y_{0}=\frac{1}{n_{0}}\left[\sqrt{a^{2}-n_{0}^{2} x^{2}}-\sqrt{a^{2}-n_{0}^{2} a^{2}}\right], \quad x<a . \tag{9}
\end{equation*}
$$

The path in this medium satisfies the equation of a circle. Determine the radius of the circle to be a / n_{0} and the location of the center to be $\left(0, y_{0}-a \sqrt{\left(1 / n_{0}^{2}\right)-1}\right)$. For initial conditions

$$
\begin{equation*}
y\left(x_{1}\right)=y_{1} \quad \text { and }\left.\quad \frac{d y}{d x}\right|_{x=x_{1}}=y_{1}^{\prime} \tag{10}
\end{equation*}
$$

show that the integration constants are determined to be

$$
\begin{equation*}
y_{0}=y_{1} \quad \text { and } \quad n_{0}=\frac{y_{1}^{\prime}}{\sqrt{1+y_{1}^{\prime 2}}} \tag{11}
\end{equation*}
$$

For the special case when $y_{1}=0$ and $y_{1}^{\prime} \rightarrow \infty$ show that $n_{0}=1$ and

$$
\begin{equation*}
y(x)=\sqrt{a^{2}-x^{2}}, \quad x<a \tag{12}
\end{equation*}
$$

Evaluate the total time taken for light to go from $\left(x_{1}=a, y_{1}=0\right)$ to $\left(x_{2}=0, y_{2}=a\right)$.

