Homework No. 07 (2021 Spring)

PHYS 510: CLASSICAL MECHANICS
Department of Physics, Southern Illinois University-Carbondale
Due date: Tuesday, 2021 Mar 22, 9.30am

1. (20 points.) A pendulum consists of a mass m_{2} hanging from a pivot by a massless string of length a_{2}. The pivot, in general, has mass m_{1}, but, for simplification let $m_{1}=0$. Let the pivot be constrained to move on a frictionless hoop of radius a_{1}. See Figure 1. For simplification, and at loss of generality, let us chose the motion of the pendulum in the plane containing the hoop.

Figure 1: Problem 1.
(a) Determine the Lagrangian for the system to be

$$
\begin{equation*}
L\left(\theta_{1}, \dot{\theta}_{1}, \theta_{2}, \dot{\theta}_{2}\right)=\frac{1}{2} m_{2} a_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} a_{2}^{2} \dot{\theta}_{2}^{2}+m_{2} a_{1} a_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)+m_{2} g a_{1} \cos \theta_{1}+m_{2} g a_{2} \cos \theta_{2} \tag{1}
\end{equation*}
$$

(b) Evaluate the following derivatives and give physical interpretations of each of these.

$$
\begin{align*}
& \frac{\partial L}{\partial \dot{\theta}_{1}}=m_{2} a_{1}^{2} \dot{\theta}_{1}+m_{2} a_{1} a_{2} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right), \tag{2a}\\
& \frac{\partial L}{\partial \theta_{1}}=-m_{2} a_{1} a_{2} \dot{\theta}_{1} \dot{\theta}_{2} \sin \left(\theta_{1}-\theta_{2}\right)-m_{2} g a_{1} \sin \theta_{1}, \tag{2b}\\
& \frac{\partial L}{\partial \dot{\theta}_{2}}=m_{2} a_{2}^{2} \dot{\theta}_{2}+m_{2} a_{1} a_{2} \dot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right), \tag{2c}\\
& \frac{\partial L}{\partial \theta_{2}}=m_{2} a_{1} a_{2} \dot{\theta}_{1} \dot{\theta}_{2} \sin \left(\theta_{1}-\theta_{2}\right)-m_{2} g a_{2} \sin \theta_{2} . \tag{2d}
\end{align*}
$$

(c) Determine the equations of motion for the system. Express them in the form

$$
\begin{align*}
\ddot{\theta}_{1}+\omega_{1}^{2} \sin \theta_{1}+\frac{1}{\beta} \ddot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)+\frac{1}{\beta} \dot{\theta}_{2}^{2} \sin \left(\theta_{1}-\theta_{2}\right) & =0, \tag{3a}\\
\ddot{\theta}_{2}+\omega_{2}^{2} \sin \theta_{2}+\beta \ddot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right)-\beta \dot{\theta}_{1}^{2} \sin \left(\theta_{1}-\theta_{2}\right) & =0, \tag{3b}
\end{align*}
$$

where

$$
\begin{equation*}
\omega_{1}^{2}=\frac{g}{a_{1}}, \quad \omega_{2}^{2}=\frac{g}{a_{2}}, \quad \beta=\frac{a_{1}}{a_{2}}=\frac{\omega_{2}^{2}}{\omega_{1}^{2}} . \tag{4}
\end{equation*}
$$

Note that β is not an independent parameter. Also, observe that, like in the case of simple pendulum, the motion is independent of the mass m_{2} when $m_{1}=0$.
(d) In the small angle approximation show that the equations of motion reduce to

$$
\begin{align*}
& \ddot{\theta}_{1}+\omega_{1}^{2} \theta_{1}+\frac{1}{\beta} \ddot{\theta}_{2}=0, \tag{5a}\\
& \ddot{\theta}_{2}+\omega_{2}^{2} \theta_{2}+\beta \ddot{\theta}_{1}=0 . \tag{5b}
\end{align*}
$$

(e) Determine the solution for the initial conditions

$$
\begin{equation*}
\theta_{1}(0)=\theta_{2}(0)=\theta_{20}, \quad \dot{\theta}_{1}(0)=\dot{\theta}_{2}(0)=0 . \tag{6}
\end{equation*}
$$

Interpret and expound your solution.
2. (20 points.) Consider the coplanar double pendulum in Figure 2.

Figure 2: Problem 2.
(a) Write the Lagrangian for the system. in particular, show that the Lagrangian can be expressed in the form

$$
\begin{equation*}
L=L_{1}+L_{2}+L_{\mathrm{int}} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
L_{1} & =\frac{1}{2}\left(m_{1}+m_{2}\right) a_{1}^{2} \dot{\theta}_{1}^{2}+\left(m_{1}+m_{2}\right) g a_{1} \cos \theta_{1} \tag{8a}\\
L_{2} & =\frac{1}{2} m_{2} a_{2}^{2} \dot{\theta}_{2}^{2}+m_{2} g a_{2} \cos \theta_{2} \tag{8b}\\
L_{\mathrm{int}} & =m_{2} a_{1} a_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right) \tag{8c}
\end{align*}
$$

(b) Determine the equations of motion for the system. Express them in the form

$$
\begin{align*}
\left(m_{1}+m_{2}\right) a_{1} \ddot{\theta}_{1}+\left(m_{1}+m_{2}\right) g \sin \theta_{1}+m_{2} a_{2} \ddot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)+m_{2} a_{2} \dot{\theta}_{2}^{2} \sin \left(\theta_{1}-\theta_{2}\right) & =0, \tag{9a}\\
a_{2} \ddot{\theta}_{2}+g \sin \theta_{2}+a_{1} \ddot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right)-a_{1} \dot{\theta}_{1}^{2} \sin \left(\theta_{1}-\theta_{2}\right) & =0 . \tag{9b}
\end{align*}
$$

(c) In the small angle approximation show that the equations of motion reduce to

$$
\begin{align*}
& \ddot{\theta}_{1}+\omega_{1}^{2} \theta_{1}+\frac{\alpha}{\beta} \ddot{\theta}_{2}=0 \tag{10a}\\
& \ddot{\theta}_{2}+\omega_{2}^{2} \theta_{1}+\beta \ddot{\theta}_{1}=0 \tag{10b}
\end{align*}
$$

where

$$
\begin{equation*}
\omega_{1}^{2}=\frac{g}{a_{1}}, \quad \omega_{2}^{2}=\frac{g}{a_{2}}, \quad \alpha=\frac{m_{2}}{m_{1}+m_{2}}, \quad \beta=\frac{a_{1}}{a_{2}}=\frac{\omega_{2}^{2}}{\omega_{1}^{2}} . \tag{11}
\end{equation*}
$$

Note that $0 \leq \alpha \leq 1$.
(d) Determine the solution for the initial conditions

$$
\begin{equation*}
\theta_{1}(0)=0, \quad \theta_{2}(0)=0, \quad \dot{\theta}_{1}(0)=0, \quad \dot{\theta}_{2}(0)=\omega_{0} \tag{12}
\end{equation*}
$$

for $\alpha=1 / 2$ and $\beta=1$.

