Homework No. 09 (2021 Spring)
 PHYS 510: CLASSICAL MECHANICS
 Department of Physics, Southern Illinois University-Carbondale
 Due date: Tuesday, 2021 Apr 6, 9.30am

1. (20 points.) Consider infinitesimal rigid translation in space, described by

$$
\begin{equation*}
\delta \mathbf{r}=\delta \boldsymbol{\epsilon}, \quad \delta \mathbf{p}=0, \quad \delta t=0, \tag{1}
\end{equation*}
$$

where $\delta \boldsymbol{\epsilon}$ is independent of position and time.
(a) Show that the change in the action due to the above translation is

$$
\begin{equation*}
\frac{\delta W}{\delta \boldsymbol{\epsilon}}=-\int_{t_{1}}^{t_{2}} d t \frac{\partial H}{\partial \mathbf{r}} \tag{2}
\end{equation*}
$$

(b) Show, separately, that the change in the action under the above translation is also given by

$$
\begin{equation*}
\frac{\delta W}{\delta \boldsymbol{\epsilon}}=\int_{t_{1}}^{t_{2}} d t \frac{d \mathbf{p}}{d t}=\mathbf{p}\left(t_{2}\right)-\mathbf{p}\left(t_{1}\right) \tag{3}
\end{equation*}
$$

(c) The system is defined to have translational symmetry when the action does not change under rigid translation. Show that a system has translation symmetry when

$$
\begin{equation*}
-\frac{\partial H}{\partial \mathbf{r}}=0 \tag{4}
\end{equation*}
$$

That is, when the Hamiltonian is independent of position. Or, when the force $\mathbf{F}=-\partial H / \partial \mathbf{r}=0$.
(d) Deduce that the linear momentum is conserved, that is,

$$
\begin{equation*}
\mathbf{p}\left(t_{1}\right)=\mathbf{p}\left(t_{2}\right), \tag{5}
\end{equation*}
$$

when the action has translation symmetry.
2. (20 points.) Consider infinitesimal rigid translation in time, described by

$$
\begin{equation*}
\delta \mathbf{r}=0, \quad \delta \mathbf{p}=0, \quad \delta t=\delta \epsilon, \tag{6}
\end{equation*}
$$

where $\delta \epsilon$ is independent of position and time.
(a) Show that the change in the action due to the above translation is

$$
\begin{equation*}
\frac{\delta W}{\delta \epsilon}=-\int_{t_{1}}^{t_{2}} d t \frac{\partial H}{\partial t} \tag{7}
\end{equation*}
$$

(b) Show, separately, that the change in the action under the above translation is also given by

$$
\begin{equation*}
\frac{\delta W}{\delta \epsilon}=\int_{t_{1}}^{t_{2}} d t \frac{d H}{d t}=H\left(t_{2}\right)-H\left(t_{1}\right) . \tag{8}
\end{equation*}
$$

(c) The system is defined to have translational symmetry when the action does not change under rigid translation. Show that a system has translation symmetry when

$$
\begin{equation*}
-\frac{\partial H}{\partial t}=0 \tag{9}
\end{equation*}
$$

That is, when the Hamiltonian is independent of time.
(d) Deduce that the Hamiltonian is conserved, that is,

$$
\begin{equation*}
H\left(t_{1}\right)=H\left(t_{2}\right) \tag{10}
\end{equation*}
$$

when the action has translation symmetry.
3. (20 points.) Consider infinitesimal rigid rotation, described by

$$
\begin{equation*}
\delta \mathbf{r}=\delta \boldsymbol{\omega} \times \mathbf{r}, \quad \delta \mathbf{p}=\delta \boldsymbol{\omega} \times \mathbf{p}, \quad \delta t=0 \tag{11}
\end{equation*}
$$

where $d \delta \boldsymbol{\omega} / d t=0$.
(a) Show that the variation in the action under the above rotation is

$$
\begin{equation*}
\frac{\delta W}{\delta \boldsymbol{\omega}}=\int_{t_{1}}^{t_{2}} d t\left[\mathbf{r} \times \frac{\partial L}{\partial \mathbf{r}}+\mathbf{p} \times \frac{\partial L}{\partial \mathbf{p}}\right] \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\delta W}{\delta \boldsymbol{\omega}}=-\int_{t_{1}}^{t_{2}} d t\left[\mathbf{r} \times \frac{\partial H}{\partial \mathbf{r}}+\mathbf{p} \times \frac{\partial H}{\partial \mathbf{p}}\right] \tag{13}
\end{equation*}
$$

(b) Show, separately, that the change in the action under the above rotation is also given by

$$
\begin{equation*}
\frac{\delta W}{\delta \boldsymbol{\omega}}=\int_{t_{1}}^{t_{2}} d t \frac{d \mathbf{L}}{d t}=\mathbf{L}\left(t_{2}\right)-\mathbf{L}\left(t_{1}\right) \tag{14}
\end{equation*}
$$

where $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ is the angular momentum.
(c) The system is defined to have rotational symmetry when the action does not change under rigid rotation. Show that a system has rotation symmetry when

$$
\begin{equation*}
\mathbf{r} \times \frac{\partial L}{\partial \mathbf{r}}=0 \quad \text { and } \quad \mathbf{p} \times \frac{\partial L}{\partial \mathbf{p}}=0 \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{r} \times \frac{\partial H}{\partial \mathbf{r}}=0 \quad \text { and } \quad \mathbf{p} \times \frac{\partial H}{\partial \mathbf{p}}=0 \tag{16}
\end{equation*}
$$

Show that this corresponds to

$$
\begin{equation*}
\frac{\partial L}{\partial \theta}=0 \quad \text { and } \quad \frac{\partial L}{\partial \phi}=0 \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial H}{\partial \theta}=0 \quad \text { and } \quad \frac{\partial H}{\partial \phi}=0 . \tag{18}
\end{equation*}
$$

That is, when the Lagrangian is independent of angular coordinates θ and ϕ.
(d) Deduce that the anglular momentum is conserved, that is,

$$
\begin{equation*}
\mathbf{L}\left(t_{1}\right)=\mathbf{L}\left(t_{2}\right), \tag{19}
\end{equation*}
$$

when the action has rotational symmetry.

