Homework No. 11 (2021 Spring)

PHYS 510: CLASSICAL MECHANICS

Department of Physics, Southern Illinois University–Carbondale Due date: Thursday, 2021 Apr 8, 9.30am

1. (20 points.) (Based on Schwinger, chapter 9) The Hamiltonian for a Kepler problem is

$$H = \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} - \frac{\alpha}{|\mathbf{r}_1 - \mathbf{r}_2|},\tag{1}$$

where \mathbf{r}_1 and \mathbf{r}_2 are the positions of the two constituent particles of masses m_1 and m_2 .

(a) Introduce the coordinates representing the center of mass, relative position, total momentum, and relative momentum:

$$\mathbf{R} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2}, \quad \mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2, \quad \mathbf{P} = \mathbf{p}_1 + \mathbf{p}_2, \quad \mathbf{p} = \frac{m_2 \mathbf{p}_1 - m_1 \mathbf{p}_2}{m_1 + m_2}, \quad (2)$$

respectively, to rewrite the Hamiltonian as

$$H = \frac{P^2}{2M} + \frac{p^2}{2\mu} - \frac{\alpha}{r},$$
 (3)

where

$$M = m_1 + m_2, \qquad \frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}.$$
 (4)

(b) Show that Hamilton's equations of motion are given by

$$\frac{d\mathbf{R}}{dt} = \frac{\mathbf{P}}{M}, \quad \frac{d\mathbf{P}}{dt} = 0, \quad \frac{d\mathbf{r}}{dt} = \frac{\mathbf{p}}{\mu}, \quad \frac{d\mathbf{p}}{dt} = -\frac{\alpha\mathbf{r}}{r^3}.$$
(5)

(c) Verify that the Hamiltonian H, the angular momentum $\mathbf{L} = \mathbf{r} \times \mathbf{p}$, and the Laplace-Runge-Lenz vector

$$\mathbf{A} = \frac{\mathbf{r}}{r} - \frac{\mathbf{p} \times \mathbf{L}}{\mu \alpha},\tag{6}$$

are the three constants of motion for the Kepler problem. That is, show that

$$\frac{dH}{dt} = 0, \quad \frac{d\mathbf{L}}{dt} = 0, \quad \frac{d\mathbf{A}}{dt} = 0. \tag{7}$$