Homework No. 01 (2021 Spring)
 PHYS 520B: ELECTROMAGNETIC THEORY

Department of Physics, Southern Illinois University-Carbondale
Due date: Tuesday, 2021 Jan 26, 12.30pm

1. (20 points.) The solution to the Maxwell equations for the case of magnetostatics in terms of the vector potential \mathbf{A} is

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{1}
\end{equation*}
$$

(a) Verify that the above solution satisfies the Coulomb gauge condition. That is, it satisfies

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{A}=0 \tag{2}
\end{equation*}
$$

(b) Further, verify that the magnetic field is the curl of the vector potential and can be expressed in the form

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\boldsymbol{\nabla} \times \mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \mathbf{J}\left(\mathbf{r}^{\prime}\right) \times \frac{\mathbf{r}-\mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} \tag{3}
\end{equation*}
$$

2. ($\mathbf{2 0}$ points.) The solution to the Maxwell equations for the case of magnetostatics was found to be

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \mathbf{J}\left(\mathbf{r}^{\prime}\right) \times \frac{\mathbf{r}-\mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} \tag{4}
\end{equation*}
$$

Verify that the above solution satisfies magnetostatics equations, that is, it satisfies

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{B}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J} \tag{6}
\end{equation*}
$$

3. (50 points.) (Based on Problem 5.8, Griffiths 4th edition.)

The magnetic field at position $\mathbf{r}=(x, y, z)$ due to a finite wire segment of length $2 L$ carrying a steady current I, with the caveat that it is unrealistic (why?), placed on the z-axis with its end points at $(0,0, L)$ and $(0,0,-L)$, is

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\hat{\phi} \frac{\mu_{0} I}{4 \pi} \frac{1}{\sqrt{x^{2}+y^{2}}}\left[\frac{z+L}{\sqrt{x^{2}+y^{2}+(z+L)^{2}}}-\frac{z-L}{\sqrt{x^{2}+y^{2}+(z-L)^{2}}}\right] \tag{7}
\end{equation*}
$$

where $\hat{\boldsymbol{\phi}}=(-\sin \phi \hat{\mathbf{i}}+\cos \phi \hat{\mathbf{j}})=(-y \hat{\mathbf{i}}+x \hat{\mathbf{j}}) / \sqrt{x^{2}+y^{2}}$.
(a) Show that by taking the limit $L \rightarrow \infty$ we obtain the magnetic field near a long straight wire carrying a steady current I,

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\hat{\phi} \frac{\mu_{0} I}{2 \pi \rho} \tag{8}
\end{equation*}
$$

where $\rho=\sqrt{x^{2}+y^{2}}$ is the perpendicular distance from the wire.
(b) Show that the magnetic field on a line bisecting the wire segment is given by

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\hat{\phi} \frac{\mu_{0} I}{2 \pi \rho} \frac{L}{\sqrt{\rho^{2}+L^{2}}} . \tag{9}
\end{equation*}
$$

(c) Find the magnetic field at the center of a square loop, which carries a steady current I. Let $2 L$ be the length of a side, ρ be the distance from center to side, and $R=\sqrt{\rho^{2}+L^{2}}$ be the distance from center to a corner. (Caution: Notation differs from Griffiths.) You should obtain

$$
\begin{equation*}
B=\frac{\mu_{0} I}{2 R} \frac{4}{\pi} \tan \frac{\pi}{4} \tag{10}
\end{equation*}
$$

(d) Show that the magnetic field at the center of a regular n-sided polygon, carrying a steady current I is

$$
\begin{equation*}
B=\frac{\mu_{0} I}{2 R} \frac{n}{\pi} \tan \frac{\pi}{n} \tag{11}
\end{equation*}
$$

where R is the distance from center to a corner of the polygon.
(e) Show that the magnetic field at the center of a circular loop of radius R,

$$
\begin{equation*}
B=\frac{\mu_{0} I}{2 R} \tag{12}
\end{equation*}
$$

is obtained in the limit $n \rightarrow \infty$.

