Homework No. 03 (2021 Spring) PHYS 520B: ELECTROMAGNETIC THEORY
 Department of Physics, Southern Illinois University-Carbondale
 Due date: Tuesday, 2021 Feb 9, 12.30pm

1. (20 points.) The vector potential for a point magnetic moment \mathbf{m} is given by

$$
\begin{equation*}
\mathbf{A}=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \mathbf{r}}{r^{3}} . \tag{1}
\end{equation*}
$$

Verify that the magnetic field due to the point dipole obtained by evaluating the curl

$$
\begin{equation*}
\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A} \tag{2}
\end{equation*}
$$

can be expressed in the form

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\mathbf{m} \mu_{0} \delta^{(3)}(\mathbf{r})+\frac{\mu_{0}}{4 \pi}(\mathbf{m} \cdot \boldsymbol{\nabla})\left(\nabla \frac{1}{r}\right) \tag{3}
\end{equation*}
$$

Verify that the magnetic field satisfies the Maxwell equation

$$
\begin{equation*}
\nabla \cdot \mathbf{B}=0 \tag{4}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{1}{r^{3}}[3(\mathbf{m} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}-\mathbf{m}]+\mathbf{m} \mu_{0} \delta^{(3)}(\mathbf{r}) \tag{5}
\end{equation*}
$$

2. (40 points.) A charged spherical shell of radius a carries a total charge q uniformly distributed on the shell. It rotates with angular velocity $\boldsymbol{\omega}$ about a diameter.
(a) Show that the current density generated by this motion is given by

$$
\begin{equation*}
\mathbf{J}(\mathbf{r})=\frac{q}{4 \pi a^{2}} \boldsymbol{\omega} \times \mathbf{r} \delta(r-a) \tag{6}
\end{equation*}
$$

Hint: Use $\mathbf{J}(\mathbf{r})=\rho(\mathbf{r}) \mathbf{v}$ and $\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r}$ for circular motion.
(b) Using

$$
\begin{equation*}
\mathbf{m}=\frac{1}{2} \int d^{3} r \mathbf{r} \times \mathbf{J}(\mathbf{r}) \tag{7}
\end{equation*}
$$

determine the magnetic dipole moment of the rotating sphere to be

$$
\begin{equation*}
\mathbf{m}=\frac{q a^{2}}{3} \boldsymbol{\omega} \tag{8}
\end{equation*}
$$

(c) Evaluate the vector potential inside and outside the sphere to be

$$
\mathbf{A}(\mathbf{r})= \begin{cases}\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \mathbf{r}}{a^{3}}, & r<a \tag{9}\\ \frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \mathbf{r}}{r^{3}}, & a<r\end{cases}
$$

Hint: Out of the three vectors $\boldsymbol{\omega}$, the observation point \mathbf{r}, and the integration variable \mathbf{r}^{\prime}, choose \mathbf{r} to be along the z axis while working in spherical polar coordinates. This leads to considerable simplification in the expression for $\left|\mathbf{r}-\mathbf{r}^{\prime}\right|$ appearing in the denominator. Otherwise, without choosing \mathbf{r} to be along $\hat{\mathbf{z}}$, use the ideas of Legendre polynomials and spherical harmonics.
(d) Derive the corresponding expression for the magnetic field, using $\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}$, to be

$$
\mathbf{B}(\mathbf{r})= \begin{cases}\frac{\mu_{0}}{4 \pi} \frac{2 \mathbf{m}}{a^{3}}, & r<a \tag{10}\\ \frac{\mu_{0}}{4 \pi} \frac{1}{r^{3}}[3(\mathbf{m} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}-\mathbf{m}], & a<r\end{cases}
$$

