Homework No. 05 (2021 Spring)

 PHYS 520B: ELECTROMAGNETIC THEORYDepartment of Physics, Southern Illinois University-Carbondale
Due date: Tuesday, 2021 Mar 9, 12.30pm

1. (50 points.) Hamiltonian for a charge particle of mass m and charge q in a magnetic field \mathbf{B} is given by

$$
\begin{equation*}
H(\mathbf{x}, \mathbf{p})=\frac{1}{2 m}(\mathbf{p}-q \mathbf{A})^{2} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A} . \tag{2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\frac{\partial \mathbf{A}}{\partial t}=0 \tag{3}
\end{equation*}
$$

(a) Show that the Hamilton equations of motion,

$$
\begin{align*}
& \frac{d \mathbf{x}}{d t}=\frac{\partial H}{\partial \mathbf{p}} \tag{4a}\\
& \frac{d \mathbf{p}}{d t}=-\frac{\partial H}{\partial \mathbf{x}} \tag{4b}
\end{align*}
$$

leads to the equations, using $(\mathbf{v}=d \mathbf{x} / d t)$

$$
\begin{align*}
m \mathbf{v} & =\mathbf{p}-q \mathbf{A} \tag{5a}\\
\frac{d \mathbf{p}}{d t} & =q(\boldsymbol{\nabla} \mathbf{A}) \cdot \mathbf{v} . \tag{5b}
\end{align*}
$$

Show that the above equations in conjunction imply the familiar equation

$$
\begin{equation*}
m \frac{d \mathbf{v}}{d t}=q \mathbf{v} \times \mathbf{B} \tag{6}
\end{equation*}
$$

(b) For two functions

$$
\begin{align*}
& A=A(\mathbf{x}, \mathbf{p}, t) \tag{7a}\\
& B=B(\mathbf{x}, \mathbf{p}, t) \tag{7b}
\end{align*}
$$

the Poisson braket with respect to the canonical variables \mathbf{x} and \mathbf{p} is defined as

$$
\begin{equation*}
[A, B]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }} \equiv \frac{\partial A}{\partial \mathbf{x}} \cdot \frac{\partial B}{\partial \mathbf{p}}-\frac{\partial A}{\partial \mathbf{p}} \cdot \frac{\partial B}{\partial \mathbf{x}} \tag{8}
\end{equation*}
$$

Evaluate the Poisson braket

$$
\begin{equation*}
[\mathbf{x}, \mathbf{x}]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=0 . \tag{9}
\end{equation*}
$$

(c) Evaluate the Poisson braket

$$
\begin{equation*}
\left[\mathbf{x}^{i}, \mathbf{v}^{j}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=\frac{1}{m} \mathbf{1}^{i j} . \tag{10}
\end{equation*}
$$

(d) Evaluate the Poisson braket

$$
\begin{equation*}
\left[\mathbf{x}^{i}, \mathbf{p}^{j}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=\mathbf{1}^{i j} . \tag{11}
\end{equation*}
$$

(e) Evaluate the Poisson braket

$$
\begin{equation*}
\left[m \mathbf{v}^{i}, m \mathbf{v}^{j}\right]_{\mathbf{x}, \mathbf{p}}^{\text {P.B. }}=q\left(\boldsymbol{\nabla}^{i} \mathbf{A}^{j}-\boldsymbol{\nabla}^{j} \mathbf{A}^{i}\right) . \tag{12}
\end{equation*}
$$

Verify that

$$
\begin{equation*}
\left(\boldsymbol{\nabla}^{i} \mathbf{A}^{j}-\boldsymbol{\nabla}^{j} \mathbf{A}^{i}\right)=\varepsilon^{i j k} \mathbf{B}^{k}=-\mathbf{1} \times \mathbf{B} . \tag{13}
\end{equation*}
$$

Poisson bracket in classical mechanics has direct correspondence to commutation relation in quantum mechanics through the factor $i \hbar$, which conforms with experiments and balances the dimensions. Then, we can write

$$
\begin{equation*}
[m \mathbf{v}, m \mathbf{v}]=i \hbar q \mathbf{B} \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
m \mathbf{v} \times m \mathbf{v}=i \hbar q \mathbf{B}, \tag{15}
\end{equation*}
$$

using the fact that the commutator and the vector product satisfies the same Lie algebra as that of Poisson bracket.

