Homework No. 06 (2021 Spring)
 PHYS 520B: ELECTROMAGNETIC THEORY

Department of Physics, Southern Illinois University-Carbondale
Due date: Tuesday, 2021 Mar 16, 12.30pm

1. (20 points.) How does the operator

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \tag{1}
\end{equation*}
$$

in the wave equation transform under the Lorentz transformtion

$$
\begin{align*}
z^{\prime} & =\gamma z+\beta \gamma c t \tag{2a}\\
c t^{\prime} & =\beta \gamma z+\gamma c t \tag{2b}
\end{align*}
$$

2. (20 points.) Lorentz transformation describing a boost in the x-direction, y-direction, and z-direction, are

$$
L_{1}=\left(\begin{array}{cccc}
\gamma_{1} & -\beta_{1} \gamma_{1} & 0 & 0 \tag{3}\\
-\beta_{1} \gamma_{1} & \gamma_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad L_{2}=\left(\begin{array}{cccc}
\gamma_{2} & 0 & -\beta_{2} \gamma_{2} & 0 \\
0 & 1 & 0 & 0 \\
-\beta_{2} \gamma_{2} & 0 & \gamma_{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad L_{3}=\left(\begin{array}{cccc}
\gamma_{3} & 0 & 0 & -\beta_{3} \gamma_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\beta_{3} \gamma_{3} & 0 & 0 & \gamma_{3}
\end{array}\right),
$$

respectively. Transformation describing a rotation about the x-axis, y-axis, and z-axis, are
$R_{1}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \omega_{1} & \sin \omega_{1} \\ 0 & 0 & -\sin \omega_{1} & \cos \omega_{1}\end{array}\right), \quad R_{2}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \omega_{2} & 0 & -\sin \omega_{2} \\ 0 & 0 & 1 & 0 \\ 0 & \sin \omega_{2} & 0 & \cos \omega_{2}\end{array}\right), \quad R_{3}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \omega_{3} & \sin \omega_{3} & 0 \\ 0 & -\sin \omega_{3} & \cos \omega_{3} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$,
respectively. For infinitesimal transformations, $\beta_{i}=\delta \beta_{i}$ and $\omega_{i}=\delta \omega_{i}$ use the approximations

$$
\begin{equation*}
\gamma_{i} \sim 1, \quad \cos \omega_{i} \sim 1, \quad \sin \omega_{i} \sim \delta \omega_{i} \tag{5}
\end{equation*}
$$

to identify the generator for boosts \mathbf{N}, and the generator for rotations the angular momentum J,

$$
\begin{equation*}
\mathbf{L}=\mathbf{1}+\delta \boldsymbol{\beta} \cdot \mathbf{N} \quad \text { and } \quad \mathbf{R}=\mathbf{1}+\delta \boldsymbol{\omega} \cdot \mathbf{J} \tag{6}
\end{equation*}
$$

respectively. Then derive

$$
\begin{equation*}
\left[N_{1}, N_{2}\right]=N_{1} N_{2}-N_{2} N_{1}=J_{3} \tag{7}
\end{equation*}
$$

This states that boosts in perpendicular direction leads to rotation. (To gain insight of the statement, calculate $\left[J_{1}, J_{2}\right]$ and interpret the result.)
(a) Is velocity addition commutative?
(b) Is velocity addition associative?
(c) Read a resource article (Wikipedia) on Wigner rotation.
3. (60 points.) The Poincaré formula for the addition of (parallel) velocities is

$$
\begin{equation*}
v=\frac{v_{a}+v_{b}}{1+\frac{v_{a} v_{b}}{c^{2}}} \tag{8}
\end{equation*}
$$

where v_{a} and v_{b} are velocities and c is speed of light in vacuum. Jerzy Kocik, from the department of Mathematics in SIUC, has invented a geometric diagram that allows one to visualize the Poincaré formula. (Refer [1].) An interactive applet for exploring velocity addition is available at Kocik's web page [2]. (For the following assume that the Poincaré formula holds for all speeds, subluminal $\left(v_{i}<c\right)$, superluminal $\left(v_{i}>c\right)$, and speed of light.)
(a) Analyse what is obtained if you add two subluminal speeds?
(b) Analyse what is obtained if you add a subluminal speed to speed of light?
(c) Analyse what is obtained if you add a subluminal speed to a superluminal speed?
(d) Analyse what is obtained if you add speed of light to another speed of light?
(e) Analyse what is obtained if you add a superluminal speed to speed of light?
(f) Analyse what is obtained if you add two superluminal speeds?

References

[1] J. Kocik. Geometric diagram for relativistic addition of velocities. Am. J. Phys., 80:737-739, August 2012.
[2] J. Kocik. An interactive applet for exploring relativistic velocity addition. http://www.mathoutlet.com/2016/08/relativistic-composition-of-velocities.html.

