Homework No. 10 (2021 Spring)

PHYS 520B: ELECTROMAGNETIC THEORY
Department of Physics, Southern Illinois University-Carbondale
Due date: Thursday, 2021 Apr 29, 12.30pm

1. (20 points.) The magnetic field associated to radiation fields is given by

$$
\begin{equation*}
c \mathbf{B}(\mathbf{r}, t)=-\hat{\mathbf{r}} \times \frac{\mu_{0} c}{4 \pi} \frac{1}{r} \int d^{3} r^{\prime}\left\{\frac{1}{c} \frac{\partial}{\partial t^{\prime}} \mathbf{J}\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right\}_{t^{\prime}=t_{r}} \tag{1}
\end{equation*}
$$

where the contribution to the field comes at the retarded time

$$
\begin{equation*}
t_{r}=t-\frac{r}{c}+\hat{\mathbf{r}} \cdot \frac{\mathbf{r}^{\prime}}{c} \tag{2}
\end{equation*}
$$

The associated electric field is given by

$$
\begin{equation*}
\mathbf{E}(\mathbf{r}, t)=-\hat{\mathbf{r}} \times c \mathbf{B}(\mathbf{r}, t) \tag{3}
\end{equation*}
$$

and satisfies

$$
\begin{equation*}
c \mathbf{B}(\mathbf{r}, t)=\hat{\mathbf{r}} \times \mathbf{E}(\mathbf{r}, t) \tag{4}
\end{equation*}
$$

From the flux of electromagnetic energy density (the Poynting vector) $\mathbf{S}=\mathbf{E} \times \mathbf{H}$ we deduce the power $d P$ radiated into the solid angle $d \Omega$ to be

$$
\begin{equation*}
d P=\lim _{r \rightarrow \infty} r^{2} d \Omega \hat{\mathbf{r}} \cdot \mathbf{S} \tag{5}
\end{equation*}
$$

Using $\hat{\mathbf{r}} \cdot \mathbf{S}=\hat{\mathbf{r}} \cdot(\mathbf{E} \times \mathbf{H})=(\hat{\mathbf{r}} \times \mathbf{E}) \cdot \mathbf{H}$ show that this leads to the expression

$$
\begin{equation*}
\frac{\partial P}{\partial \Omega}=\lim _{r \rightarrow \infty} \frac{1}{4 \pi}\left(\frac{\mu_{0} c}{4 \pi}\right)\left|\frac{c \mathbf{B}(\mathbf{r}, t)}{\frac{\mu_{0} c}{4 \pi} \frac{1}{r}}\right|^{2}=\lim _{r \rightarrow \infty} \frac{1}{4 \pi}\left(\frac{\mu_{0} c}{4 \pi}\right)|\hat{\mathbf{r}} \times \boldsymbol{\ell}|^{2} \tag{6}
\end{equation*}
$$

where we defined the effective current (with direction), using the Greek letter iota,

$$
\begin{equation*}
\iota\left(\hat{\mathbf{r}}, t-\frac{r}{c}\right)=\int d^{3} r^{\prime}\left\{\frac{1}{c} \frac{\partial}{\partial t^{\prime}} \mathbf{J}\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right\}_{t^{\prime}=t_{r}} \tag{7}
\end{equation*}
$$

Verify that $c \mathbf{B}(\mathbf{r}, t) /\left(\frac{\mu_{0} c}{4 \pi} \frac{1}{r}\right)$ has the dimensions of current. Thus, conclude that

$$
\begin{equation*}
\frac{\mu_{0} c}{4 \pi}=\frac{1}{4 \pi} \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=29.9792458 \Omega \tag{8}
\end{equation*}
$$

has the dimensions of resistance.
(a) Consider an antenna configuration consisting of parallel current carrying wires of length L, each separated by distanc a, described in detail by

$$
\begin{align*}
\mathbf{J}\left(\mathbf{r}^{\prime}, t^{\prime}\right)= & \hat{\mathbf{z}} I_{0} \sin \omega_{0} t \delta\left(x^{\prime}+\frac{a}{2}\right) \delta\left(y^{\prime}\right) \theta\left(-L<2 z^{\prime}<L\right) . \\
& +\hat{\mathbf{z}} I_{0} \sin \omega_{0} t \delta\left(x^{\prime}-\frac{a}{2}\right) \delta\left(y^{\prime}\right) \theta\left(-L<2 z^{\prime}<L\right) . \tag{9}
\end{align*}
$$

The function θ equals 1 when the argument is a true statement, and zero otherwise. Show that

$$
\begin{align*}
\iota\left(\hat{\mathbf{r}}, t-\frac{r}{c}\right)= & \hat{\mathbf{z}} 2 I_{0} \cos \left(\omega_{0}\left(t-\frac{r}{c}-\frac{a}{2 c} \sin \theta \cos \phi\right)\right) \frac{\sin \left(\pi \frac{L}{\lambda_{0}} \cos \theta\right)}{\cos \theta} \\
& +\hat{\mathbf{z}} 2 I_{0} \cos \left(\omega_{0}\left(t-\frac{r}{c}+\frac{a}{2 c} \sin \theta \cos \phi\right)\right) \frac{\sin \left(\pi \frac{L}{\lambda_{0}} \cos \theta\right)}{\cos \theta} \tag{10}
\end{align*}
$$

where $\omega_{0} / c=2 \pi / \lambda_{0}$. Then, evaluate the expression for the magnetic field.
(b) Using Eq. (6) show that

$$
\begin{align*}
\frac{\partial P}{\partial \Omega}=P_{0} \frac{\sin ^{2} \theta}{\pi} \frac{\sin ^{2}\left(\pi \frac{L}{\lambda_{0}} \cos \theta\right)}{\cos ^{2} \theta} & {\left[\cos \left(\omega_{0}\left(t-\frac{r}{c}-\frac{a}{2 c} \sin \theta \cos \phi\right)\right)\right.} \\
& \left.+\cos \left(\omega_{0}\left(t-\frac{r}{c}+\frac{a}{2 c} \sin \theta \cos \phi\right)\right)\right]^{2} \tag{11}
\end{align*}
$$

where

$$
\begin{equation*}
P_{0}=\left(\frac{\mu_{0} c}{4 \pi}\right) I_{0}^{2} \tag{12}
\end{equation*}
$$

Evaluate the average power \bar{P} radiated into a solid angle using

$$
\begin{equation*}
\frac{\partial \bar{P}}{\partial \Omega}=\frac{1}{T_{0}} \int_{0}^{T_{0}} d t \frac{\partial P}{\partial \Omega} \tag{13}
\end{equation*}
$$

where $\omega_{0}=2 \pi / T_{0}$. Show that

$$
\begin{equation*}
\frac{\partial \bar{P}}{\partial \Omega}=P_{0} \frac{\sin ^{2} \theta}{\pi} \frac{\sin ^{2}\left(\pi \frac{L}{\lambda_{0}} \cos \theta\right)}{\cos ^{2} \theta} 2 \cos ^{2}\left(\pi \frac{a}{\lambda_{0}} \sin \theta \cos \phi\right) \tag{14}
\end{equation*}
$$

Hint: Use the integral

$$
\begin{equation*}
\frac{1}{T_{0}} \int_{0}^{T_{0}} d t \cos ^{2}\left(\omega_{0} t+\delta\right)=\frac{1}{2} \tag{15}
\end{equation*}
$$

(c) For the case $L \ll \lambda_{0}$, use the approximation

$$
\begin{equation*}
\frac{\sin \left(\pi \frac{L}{\lambda_{0}} \cos \theta\right)}{\cos \theta} \sim \pi \frac{L}{\lambda_{0}} \tag{16}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
\frac{\partial \bar{P}}{\partial \Omega}=P_{0} \frac{\sin ^{2} \theta}{\pi}\left(\pi \frac{L}{\lambda_{0}}\right)^{2} 2 \cos ^{2}\left(\pi \frac{a}{\lambda_{0}} \sin \theta \cos \phi\right) \tag{17}
\end{equation*}
$$

(d) For the case $\lambda_{0} \ll L$, if we restrict our observation region to $\theta \sim \pi / 2$, the system has the characteristics of a two dimensional system. To bring this characteristic out we integrate over θ,

$$
\begin{equation*}
\frac{\partial \bar{P}}{\partial \phi}=P_{0} \int_{0}^{\pi} \sin \theta d \theta \frac{\sin ^{2} \theta}{\pi} \frac{\sin ^{2}\left(\pi \frac{L}{\lambda_{0}} \cos \theta\right)}{\cos ^{2} \theta} 2 \cos ^{2}\left(\pi \frac{a}{\lambda_{0}} \sin \theta \cos \phi\right) \tag{18}
\end{equation*}
$$

Substitute

$$
\begin{equation*}
z=\pi \frac{L}{\lambda_{0}} \cos \theta \tag{19}
\end{equation*}
$$

such that

$$
\begin{equation*}
-\sin \theta d \theta=\frac{d z}{\left(\pi L / \lambda_{0}\right)} \tag{20}
\end{equation*}
$$

and use the approximations

$$
\begin{equation*}
\sin \theta=\sqrt{1-\frac{z^{2}}{\left(\pi L / \lambda_{0}\right)^{2}}} \sim 1 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi \frac{L}{\lambda_{0}} \rightarrow \infty \tag{22}
\end{equation*}
$$

to derive

$$
\begin{equation*}
\frac{\partial \bar{P}}{\partial \phi}=P_{0}\left(\pi \frac{L}{\lambda_{0}}\right) 2 \cos ^{2}\left(\pi \frac{a}{\lambda_{0}} \cos \phi\right) \frac{1}{\pi} \int_{-\infty}^{\infty} d z \frac{\sin ^{2} z}{z^{2}} \tag{23}
\end{equation*}
$$

Use the integral

$$
\begin{equation*}
\int_{0}^{\infty} d z \frac{\sin ^{2} z}{z^{2}}=\int_{0}^{\infty} d z \frac{\sin z}{z}=\frac{\pi}{2} \tag{24}
\end{equation*}
$$

Thus, derive the expression for the average power radiated per angle $d \phi$,

$$
\begin{equation*}
\frac{\partial \bar{P}}{\partial \phi}=P_{0}\left(\pi \frac{L}{\lambda_{0}}\right) 2 \cos ^{2}\left(\pi \frac{a}{\lambda_{0}} \cos \phi\right) . \tag{25}
\end{equation*}
$$

Compare this with the formula for double-slit interference pattern obtained using the Huygens-Fresnel principle for the classical wave propagation of light.

