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Chapter 1

Measurement

1.1 International System (SI) of units

Three of the total of seven SI base units are

Physical Quantity Dimension Unit Name Unit Symbol
Time T second s
Length L meter m
Mass M kilogram kg

The remaining four physical quantities in the SI base units are: charge (measured in Coulomb), temperature
(measured in Kelvin), amount of substance (measured in mole), and luminosity (measured in candela).

Orders of magnitude of physical quantities are written in powers of ten using the following prefixes:

c = 10−2, m = 10−3, µ = 10−6, n = 10−9, p = 10−12, (1.1a)

d = 102, k = 103, M = 106, G = 109, T = 1012. (1.1b)

Lecture-Example 1.1: (Serway and Jewett, 9 ed.)
Why is the following situation impossible? A room measures 4.0m × 4.0m, and its ceiling is 3.0m high. You
completely wallpaper the walls of the room with the pages of a book which has 1000pages of text (on 500 sheets)
measuring 0.21m× 0.28m. You even cover doors and windows.

1.2 Dimensional analysis

Addition and subtraction is performed on similar physical quantities. Consider the mathematical relation
between distance x, time t, velocity v, and acceleration a, given by

x = vt+
1

2
at2. (1.2)

This implies that
[

x
]

=
[

vt
]

=
[

at2
]

= L, (1.3)

where we used the notation involving the square brackets

[

a
]

= dimension of the physical quantity represented by the symbol a. (1.4)

11



12 CHAPTER 1. MEASUREMENT

10−35m Planck length
10−18m size of electron
10−15m size of proton
10−10m size of atom
10−8m size of a virus
10−6m size of a bacteria
100m size of a human
106m size of Earth
1012m size of solar system
1015m distance to closest star
1021m size of a galaxy
1024m distance to closest galaxy
1025m size of observable universe

Table 1.1: Orders of magnitude (length). See also a slideshow titled Secret Worlds: The Universe Within, which
depicts the relative scale of the universe.

Mathematical functions, like logarithm and exponential, are evaluated on numbers, which are dimensionless.
The trigonometric functions also take dimensionless quantities as input. Note that angles are quantified using
units of degrees and radians, which have no physical dimensions associated to them.

Lecture-Example 1.2:
Consider the mathematical expression

x = vt+
1

2!
at2 +

1

3!
bt3 +

1

4!
ct4, (1.5)

where x is measured in units of distance and t is measured in units of time. Determine the dimension of the
physical quantities represented by the symbols v, a, b, and c.

• Since only like quantities can be added aor subtracted, conclude
[

x
]

=
[

vt
]

=
[

at2
]

=
[

bt3
]

=
[

ct4
]

, (1.6)

where we dropped the numbers because numbers do not have physical dimenions.

• Thus,
[

x
]

=
[

vt
]

. So, we have
[

v
]

= LT−1.

• Thus,
[

x
]

=
[

at2
]

. So, we have
[

a
]

= LT−2.

• Thus,
[

x
]

=
[

bt3
]

. So, we have
[

b
]

= LT−3.

• Thus,
[

x
]

=
[

ct4
]

. So, we have
[

c
]

= LT−4.

Lecture-Example 1.3: (Wave equation)
Consider the mathematical expression, for a travelling wave,

y = A cos(kx− ωt+ δ), (1.7)

where x and y are measured in units of distance, t is measured in units of time, and δ is measured in units
of angle (radians, that is dimensionless). Deduce the dimensions of the physical quantities represented by the
symbols A, k, and ω. Further, what can we conclude about the nature of physical quantity constructed by ω

k
?

http://micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10/index.html
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• Deduce
[

y
]

=
[

A
]

. Thus, conclude
[

A
]

= L.

• Deduce
[

kx
]

=
[

δ
]

= 1. Thus, conclude
[

k
]

= L−1.

• Deduce
[

ωt
]

=
[

δ
]

= 1. Thus, conclude
[

ω
]

= T−1.

• Deduce
[

kx
]

=
[

ωt
]

. Thus, conclude that
[

ω
k

]

= LT−1. This suggests that the construction ω
k
measures

speed.

Lecture-Example 1.4: (Weyl expansion)
The list of overtones (frequencies of vibrations) of a drum is completely determined by the shape of the drum-
head. Is the converse true? That is, what physical quantities regarding the shape of a drum can one infer, if
the complete list of overtones is given. This is popularly stated as ‘Can one hear the shape of a drum?’ Weyl
expansion, that addresses this question, is

E =
A

δ3
+

C

δ2
+

B

δ
+ a0 + a1δ + a2δ

2 + . . . , (1.8)

where E is measured in units of inverse length, and δ is measured in units of length. Deduce that the physical
quantities A and C have the dimensions of area and circumference, respectively.

Lecture-Example 1.5:
What can you deduce about the physical quantity c in the famous equation

E = mc2, (1.9)

if the energy E has the dimensions ML2T−2 and mass m has the dimension M .

•

[

c
]

= LT−1. Thus, the physical quantity c has the dimension of speed.

1.3 Problems

1.3.1 Conceptual questions

1. In the International System of Units (SI) the three fundamental units of measurement in mechanics are
chosen to be time (second), length (meter), and mass (kilogram). If, instead, the three fundamental units
of measurement in mechanics were chosen to be time (second), length (meter), and density (rho), then
what would be the unit of measurement of mass in terms of second, meter, and rho.

2. What is wrong with this road sign:

Carbondale 7.0mi (11.263km)?
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1.3.2 Problems based on lectures

1. (10 points.) The corners of a square lie on a circle of radius R. Find the area of the square as a function
of R.

2. (10 points.) A square surrounds a circle such that the circumference of the circle is tangent to all four
sides of the square. What is the ratio of the area of the square to area of the circle.

3. (10 points.) What can you deduce about the physical quantity c in the famous equation

E = mc2, (1.10)

if the energy E has the dimensions ML2T−2 and mass m has the dimension M . In particular, what is
the dimension of c? That is, given

[c] = MαLβT γ, (1.11)

determine α, β, and γ.

4. (10 points.) Given the expression

E =
√

m2c4 + p2c2, (1.12)

wherem is measured in units of mass and [c] = LT−1. Determine the dimension of the quantity represented
by the symbol p. That is, given

[p] = MαLβT γ, (1.13)

determine α, β, and γ.

5. (10 points.) Consider the mathematical expression

x = vt+
1

2!
at2 +

1

3!
bt3 +

1

4!
ct4, (1.14)

where x is measured in units of distance and t is measured in units of time. Determine the dimension of
the physical quantity represented by the symbol b. That is, given

[b] = MαLβT γ , (1.15)

determine α, β, and γ.

6. (10 points.) Consider the mathematical expression

x =
1

7!
bt7 +

1

8!
ct8, (1.16)

where x is measured in units of distance and t is measured in units of time. Determine the dimension of
the physical quantity represented by the ratio b

c
. That is, given

[

b

c

]

= MαLβT γ , (1.17)

determine α, β, and γ.

7. (10 points.) Consider the mathematical expression

x = Ae−ωt, (1.18)

where x is measured in units of distance and t is measured in units of time. Evaluate dx
dt
. Then, determine

the dimension of ωA. That is, given
[ωA] = MαLβT γ , (1.19)

determine α, β, and γ.
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8. (10 points.) Complete the operations and express your answer in scientific notation with correct number
of significant digits.

(a) 345 × 72

(b) 55 ÷ 11

(c) 34.3456 + 42.1

(d) 46.32− 56.92345

(e) 15600− 12

1.3.3 Textbook problems

Homework-Problem 1.1: Two spheres are cut from a material of uniform density. One has radius 5.00 cm.
The mass of the other is eight times greater. Find its radius.

Hints:

• Uniform density implies constant mass per unit volume. Thus, deduce the ratio

M1

R3
1

=
M2

R3
2

. (1.20)

Homework-Problem 1.2: The figure below shows a frustum of a cone.

Figure 1.1: Homework-Problem 1.2.

Match each of the expressions,

π(r1 + r2)
√

h2 + (r2 − r1)2, (1.21a)

2π(r1 + r2), (1.21b)

1

3
πh(r21 + r1r2 + r22), (1.21c)

with the quantity it describes: the total circumference of the flat circular faces, the volume, and the are of the
curved surface.

Hints:

• Determine the dimension of each expression and compare it to the dimension of circumference, area, and
volume.
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Homework-Problem 1.3: Newton’s law of universal gravitation is represented by

F =
GMm

r2
(1.22)

where F is the magnitude of the gravitational force exerted by one small object on another, M and m are
the masses of the objects, and r is a distance. Force has the SI units kgm/s2. What are the SI units of the
proportionality constant G?

Hints:

• Use
[

F
]

=

[

G
][

M
][

m
]

[

r
]2

, (1.23)

and
[

F
]

= MLT−2,
[

M
]

=
[

m
]

= M ,
[

r
]

= L.

Homework-Problem 1.4: Assume the equation x = At3 + Bt describes the motion of a particular object,
with x having the dimension of length and t having the dimension of time. Determine the dimensions of the
constants A and B. Further, determine the dimensions of the derivative dx

dt
= 3At2 +B.

Hints:

• Deduce and use
[

x
]

=
[

At3
]

=
[

Bt
]

.

• Deduce and use
[

dx
dt

]

=
[

At2
]

=
[

B
]

.

Homework-Problem 1.5: Suppose your hair grows at the rate 1
32

inch per day. Find the rate at which it
grows in nanometers per second. Because the distance between atoms in a molecule is on the order of 0.1 nm,
your answer suggests how rapidly layers of atoms are assembled in this protein synthesis.

Hints:

• Convert units,
1

32

inch

day
= ?

nm

s
. (1.24)

Homework-Problem 1.6: The distance from the Sun to the nearest star is about 4 × 1016m. The Milky
Way galaxy is roughly a disk of diameter ∼ 1021m and thickness ∼ 1019m. Find the order of magnitude of the
number of stars in the Milky Way. Assume the distance between the Sun and our nearest neighbor is typical.

Hints:

• Find volume of Milky Way, using volume of disc πR2h. Let the volume occupied per star be a cube of
side 4× 1016 m. Divide the two volumes to estimate the number of stars in Milky Way.



Chapter 2

Motion in one dimension

2.1 Motion

The pursuit of science is to gain a fundamental understanding of the principles governing our nature. A
fundamental understanding includes the ability to make predictions.

Time

The very idea of prediction stems from the fact that time t always moves forward, that is,

∆t = tf − ti > 0, (2.1)

where ti is an initial time and tf represents a time in the future. We will often choose the initial time ti = 0.

Position

Our immediate interest would be to predict the position of an object. The position of an object (in space),
relative to another point, is unambiguously specified as a vector ~x. The position is a function of time, that is,
~x(t). Newtonian mechanics, the subject of discussion, proposes a strategy to determine the function ~x(t), thus
offering to predict the position of the object in a future time. This sort of prediction is exemplified every time
a spacecraft is sent out, because we predict that it will be at a specific point in space at a specific time in the
future. We will mostly be interested in the change in position,

∆~x = ~x(tf )− ~x(ti). (2.2)

Velocity

The instantaneous velocity of an object at time t is defined as the ratio of the change in position and change in
time, which is unambiguous in the instantaneous limit,

~v(t) =
d~x

dt
= lim

∆t→0

∆~x

∆t
. (2.3)

We recognize the instantaneous velocity as the derivative of the position with respect to time. The magnitude
of the instantaneous velocity vector is defined as the speed.

The average velocity is defined as

~vavg =
~xf − ~xi

tf − ti
=

1

tf − ti

∫ tf

ti

dt ~v(t), (2.4)

where we used the fact that integration is the anti of derivative. This average velocity, defined using the first
equality in Eq. (2.4), is overly used in non-calculus-based discussions on the topic, which has its limitations, but

17



18 CHAPTER 2. MOTION IN ONE DIMENSION

is nevertheless sufficient for a requisite understanding. In this context the speed is often also associated with
the magnitude of the average velocity.

Lecture-Example 2.1: (Case t1 = t2)
While travelling in a straight line a car travels the first segment of distance d1 in time t1 at an average velocity
v1, and it travels the second segment of distance d2 in time t2 = t1 at an average velocity v2. Show that the
velocity of the total trip is given by the average of the individual velocities,

vtot =
v1 + v2

2
. (2.5)

Lecture-Example 2.2: (Case d1 = d2)
While travelling in a straight line a car travels the first segment of distance d1 in time t1 at an average velocity
v1, and it travels the second segment of distance d2 = d1 in time t2 at an average velocity v2. Show that inverse
of the velocity of the total trip is given by the average of the inverse of the individual velocities,

2

vtot
=

1

v1
+

1

v2
. (2.6)

• Consider the following related example. You travel the first half segment of a trip at an average velocity
of 50miles/hour. What is the average velocity you should maintain during the second segment, of equal
distance, to login an average velocity of 60miles/hour for the total trip? Repeat for the case when you
travel the first segment at 45miles/hour.

• Next, repeat for the case when you travel the first segment at 30miles/hour. Comprehend this. (Hint:
Assume the total distance to be 60miles and calculate the time remaining for the second segment.)

Acceleration

The acceleration of an object at time t is defined as the rate of change in velocity,

~a(t) =
d~v

dt
= lim

∆t→0

∆~v

∆t
=

d2~x

dt2
. (2.7)

Acceleration is the second derivative of position with respect to time.

Lecture-Example 2.3: A particle’s position is given by

x(t) = v0 t+
1

2
a0 t

2 +
1

6
b0 t

3. (2.8)

• Determine the particle’s velocity as a function of time.

• What is the particle’s velocity at time t = v0
a0
?

• Determine the particle’s acceleration as a function of time.

• What is the particle’s acceleration at time t = a0

b0
?
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Lecture-Example 2.4: (Review of maxima-minima)
A ball is thrown vertically upward from the top of a 10.0m high building at a speed of 20.0m/s. Starting the
clock right when the ball is thrown, the height of the ball (measured from the ground) as a function of time is
given by

y(t) = 10.0 + 20.0t− 5t2. (2.9)

• Plot y(t).

• Determine the time taken by the ball to reach the maximum height.

• Determine the maximum height of the ball.

• Determine the time taken for the ball to reach the ground. This involves finding the solution of a quadratic
equation. Give a physical interpretation for the both the solutions.

Lecture-Example 2.5: Starting at time t = 0, an object moves along a straight line. Its coordinate in meters
is given by

x(t) = 75 t− 1.0 t3, (2.10)

where t is in seconds. What is its acceleration when it momentarily stops?

2.2 Graphical analysis

In calculus we learn that the slope of the tangent to the function is the derivative, and the area under the
function is the integral. These ideas lead to the following interpretations.

t

x(t)

Figure 2.1: A position-time graph.

Position-time graph

In the position-time graph the slope of the tangent to the position curve at a certain time represents the
instantaneous velocity. The inverse of the curvature of the position curve at a certain time is related to the
instantaneous acceleration.



20 CHAPTER 2. MOTION IN ONE DIMENSION

Velocity-time graph

In the velocity-time graph the slope of the tangent to the velocity curve at a certain time represents the
instantaneous acceleration. The area under the velocity curve is the position up to a constant.

Acceleration-time graph

The area under the acceleration curve is the velocity up to a constant.

2.3 Motion with constant acceleration

Definition of velocity and acceleration supplies the two independent equations for the case of constant acceler-
ation:

∆x

∆t
=

vf + vi
2

, (2.11a)

a =
vf − vi
∆t

. (2.11b)

It is worth emphasizing that the relation in Eq. (2.11a) is valid only for the case of constant velocity. It is obtained
by realizing that velocity is a linear function of time for constant acceleration in Eq. (2.4). Eqs. (2.11a) and
(2.11b) are two independent equations involving five independent variables: ∆t,∆x, vi, vf , a. We can further
deduce,

∆x = vi∆t+
1

2
a∆t2, (2.11c)

∆x = vf∆t− 1

2
a∆t2, (2.11d)

v2f = v2i + 2a∆x, (2.11e)

obtained by subtracting, adding, and multiplying, Eqs. (2.11a) and (2.11b), respectively. There is one of the
five variables missing in each of the Eqs. (2.11), and it is usually the variable missing in the discussion in a
particular context.

Lecture-Example 2.6: While driving on a highway you press on the gas pedals for 20.0 seconds to increase
your speed from an initial speed of 40.0miles/hour to a final final speed of 70.0miles/hour. Assuming uniform
acceleration find the acceleration.
Answer: 0.67m/s2.

To gain an intuitive feel for the magnitude of the velocities it is convenient to observe that, using 1mile ∼
1609m,

2
miles

hour
∼ 1

m

s
, (2.12)

correct to one significant digit, which is more accurately 1miles/hour=0.447m/s.

Lecture-Example 2.7:
While standing on a h = 50.0m tall building you throw a stone straight upwards at a speed of vi = 15m/s.

• How long does the stone take to reach the ground. (Be careful with the relative signs for the variables.)
Mathematically this leads to two solution. Interpret the negative solution.

• How high above the building does the stone reach?
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1m/s human walking speed
10− 50m/s typical speed on a highway
340m/s speed of sound, speed of a typical fighter jet
1000m/s speed of a bullet
11 200m/s minimum speed necessary to escape Earth’s gravity
299 792 458m/s speed of light

Table 2.1: Orders of magnitude (speed)

1m/s2 typical acceleration on a highway
g = 9.8m/s2 acceleration due to gravity on surface of Earth

3g space shuttle launch
5g causes dizziness (and fear) in humans
6g high-g roller coasters and dragsters
8g fighter jets pulling out of a dive
20g damage to capillaries
50g causes death, a typical car crash

Table 2.2: Orders of magnitude (acceleration)

• What is the velocity of the stone right before it reaches the ground?

• How will your results differ if the stone was thrown vertically downward with the same speed?

Lecture-Example 2.8:
The kinematic equations are independent of mass. Thus, the time taken to fall a certain distance is independent
of mass. The following BBC video captures the motion of a feather and a bowling ball when dropped together
inside the world’s biggest vacuum chamber.

https://www.youtube.com/watch?v=E43-CfukEgs

Lecture-Example 2.9:
A fish is dropped by a pelican that is rising steadily at a speed vi = 4.0m/s. Determine the time taken for the
fish to reach the water 15.0m below. How high above the water is the pelican when the fish reaches the water?

• The distance the fish falls is given by, (xf is chosen to be positive upward so that vi is positive when the
fish is moving upward,) is given by,

xf = vit−
1

2
gt2, (2.13)

and the distance the pelican moves up in the same time is given by (xp is chosen to be positive upward)

xp = vit. (2.14)

At the time the fish hits the water we have xf = −15.0m. (Answer: t = 2.2 s or −1.4 s. Interpret
the meaning of both solutions and chose the one appropriate to the context. Use this time to calculate
xp = 8.8m, which should be added to 15.0m to determine how high above the water pelican is at this
time.)

https://www.youtube.com/watch?v=E43-CfukEgs
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• Repeat for the case when the pelican is descending at a speed vi. Compare the answers for the times
with the negative solution in the rising case. (Answer: t = 1.4 s or −2.2 s. Use this time to calculate
xp = −5.6m.)

Lecture-Example 2.10: (Speeder and cop)
A speeding car is moving at a constant speed of v = 80.0miles/hour (35.8m/s). A police car is initially at rest.
As soon as the speeder crosses the police car the cop starts chasing the speeder at a constant acceleration of
a = 2.0m/s2. Determine the time it takes for the cop to catch up with the speeder. Determine the distance
travelled by the cop in this time.

• The distance travelled by the cop is given by

xc =
1

2
at2, (2.15)

and the distance travelled by the speeder is given by

xs = vt. (2.16)

When the cop catches up with the speeder we have

xs = xc. (2.17)

• How would your answers change if the cop started the chase t0 = 1.0 s after the speeder crossed the cop?
This leads to two mathematically feasible solutions, interpret the unphysical solution. Plot the position
of the speeder and the cop on the same position-time plot.

Lecture-Example 2.11:
A key falls from a bridge that is 50.0m above the water. It falls directly into a boat that is moving with constant
velocity vb, that was 10.0m from the point of impact when the key was released. What is the speed vb of the
boat?

• The distance the key falls is given by

dk =
1

2
gt2, (2.18)

and the distance the boat moves in the same time is given by

db = vbt. (2.19)

Eliminating t gives a suitable equation.

Lecture-Example 2.12: (Drowsy cat)
A drowsy cat spots a flowerpot that sails first up and then down past an open window. The pot is in view for
a total of 0.50 s, and the top-to-bottom height of the window is 2.00m. How high above the window top does
the flower pot go?
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• The time taken to cross the window during the upward motion is the same as the time taken during the
downward motion. Determine the velocity of the flowerpot as it crosses the top edge of the window, then
using this information find the answer.
Answer: 2.34m

Lecture-Example 2.13:
A man drops a rock into a well. The man hears the sound of the splash T = 2.40 s after he releases the rock
from rest. The speed of sound in air (at the ambient temperature) is v0 = 336m/s. How far below the top
of the well h is the surface of the water? If the travel time for the sound is ignored, what percentage error is
introduced when the depth of the well is calculated?

• The time taken for the rock to reach the surface of water is

t1 =
2h

g
, (2.20)

and the time taken for the sound to reach the man is given by

t2 =
h

v0
, (2.21)

and it is given that

t1 + t2 = T. (2.22)

This leads to a quadratic equation in h which has the solutions

h =
v20
g

[

(

1 +
gT

v0

)

±
√

1 + 2
gT

v0

]

. (2.23)

Travel time for the sound being ignored corresponds to the limit v0 → ∞. The parameter gT/v0 ∼ 0.07
tells us that this limit will correspond to an error of about 7%.

• The correct solution corresponds to the one from the negative sign, h = 26.4m. The other solution,
h = 24630m, corresponds to the case where the rock hits the surface of water in negative time, which is
of course unphysical in our context. Visualize this by plotting the path of the rock as a parabola, which
is intersected by the path of sound at two points.

Lecture-Example 2.14: (An imaginary tale: The story of
√
−1, by Paul J. Nahin)

Imagine that a man is running at his top speed v to catch a bus that is stopped at a traffic light. When he is
still a distance d from the bus, the light changes and the bus starts to move away from the running man with
a constant acceleration a.

• When will the man catch the bus? In terms of the time-scale of the man,

t1 =
d

v
, (2.24)

and the time-scale of the bus,

t2 =

√

2d

a
, (2.25)
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derive the following expression for time, x = 2t1/t2,

t = t1

[

1±
√
1− x2

x

]

. (2.26)

Plot the distances traversed by the man and the bus on the same plot. What is the interpretation of the
crossings in the plots?

• What is the minimum speed necessary for the man to catch the bus?

• If we suppose that the man does not catch the bus, at what time is the man closest to the bus?

2.4 Problems

2.4.1 Conceptual questions

1. (5 points.) Time always moves forward, that is, the time difference ∆t > 0. In other words, time is
monotonic. This is often referred to as the arrow of time. Change in position of an object, unlike time,
could be positive, zero, or negative. Imagine and describe an universe where time is not monotonic.

2. (5 points.) Is the acceleration of an object zero when it momentarily stops? Explain.

3. (5 points.) Give a non-trivial example of a motion with both velocity and acceleration zero at the same
moment. In other words, give an example of a function x(t) whose first and second derivative is zero at
an instant. The trivial example is a constant function.

4. (5 points.) When you throw a ball up in the air what is the velocity of the ball when it is reaches the
highest point? (Answer: Zero.) What is the instantaneous acceleration of the ball when the ball reaches
the highest point? (Hint: The instantaneous acceleration of the ball at the highest point is not zero.)
Is this consistent with the definition of the instantaneous acceleration as the derivative of velocity with
respect to time,

a =
dv

dt
? (2.27)

5. (5 points.) The position of an object moving in a straight line as a function of time is plotted in Figure 2.2.
The slope of the curve in the position-time graph at 3.0 hours is zero. Thus, the velocity of the object at
3.0 hours is zero. Is the acceleration of object at 3.0 hours zero? If so, explain. If not, why not?

6. (5 points.) The kinematic equations are independent of mass. Thus, the time taken to fall a certain
distance is independent of mass. The following BBC video captures the motion of a feather and a bowling
ball when dropped together inside the world’s biggest vacuum chamber.

https://www.youtube.com/watch?v=E43-CfukEgs

Does this imply that it is impossible to determine the mass of planets by observing their motion in the
sky?

7. (5 points.) In a room devoid of air a stuntman is released from rest. During the fall, the stuntman
throws a ball vertically upwards. Describe the motion of the ball as perceived by the stuntman.

https://www.youtube.com/watch?v=E43-CfukEgs
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Figure 2.2: Problem 5.

2.4.2 Problems based on lectures

1. (10 points.) Motion of an object moving with uniform velocity is described by the equation

x = vt, (2.28)

where x is the position of the object, v is the velocity of the object, and t is time.

(a) Plot x versus t for v = 3.0m/s. Give a real life example that is described by this scenario.

(b) Plot x versus t for v = −3.0m/s. Give a real life example that is described by this scenario.

(c) What is the acceleration of the object for these cases?

2. (10 points.) Motion of an object moving with uniform acceleration, with intial velocity v0, is described
by the equation

x = v0t+
1

2
at2, (2.29)

where x is the position of the object, a is the acceleration of the object, and t is time.

(a) Plot x versus t for v0 = 0 and a = 2.0m/s2. Give a real life example that is described by this
scenario.

(b) Plot x versus t for v0 = 0 and a = −2.0m/s2. Give a real life example that is described by this
scenario.

(c) Plot x versus t for v0 = +1.0m/s and a = 2.0m/s2. Give a real life example that is described by
this scenario.

(d) Plot x versus t for v0 = +1.0m/s and a = −2.0m/s2. Give a real life example that is described by
this scenario.

(e) Plot x versus t for v0 = −1.0m/s and a = 2.0m/s2. Give a real life example that is described by
this scenario.

(f) Plot x versus t for v0 = −1.0m/s and a = −2.0m/s2. Give a real life example that is described by
this scenario.
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3. (10 points.) A particle’s velocity is given by

v(t) = v0 + a0t+
1

2
b0t

2. (2.30)

(a) Determine the particle’s acceleration as a function of time.

(b) Determine the particle’s rate of change of acceleration as a function of time.

(c) Given the particle starts from rest at t = 0, determine the velocity of the particle when the instan-
taneous acceleration of the particleis zero.

4. (10 points.) The position of a particle x as a function of time t is given by

x(t) = 3αt− α

τ2
t3, (2.31)

where α and τ are constants. Determine the magnitude of the acceleration of the particle when it mo-
mentarily stops.

5. (10 points.) While standing on a 50.0m tall building you throw a stone straight upwards at a speed of
15m/s.

(a) How long does the stone take to reach the ground?

(b) How high above the building does the stone reach?

6. (10 points.) A fish is dropped by a pelican that is rising steadily at a speed 4.0m/s. Determine the time
taken for the fish to reach the water 15.0m below. How high above the water is the pelican when the fish
reaches the water?

7. (10 points.) A car is traveling at 10.0m/s, and the driver sees a traffic light turn red. After 0.500 s (the
reaction time), the driver applies the brakes, and the car decelerates at 8.00m/s2. What is the stopping
distance of the car, as measured from the point where the driver first sees the red light?

8. (10 points.) A speeding car is moving at a constant speed of v = 80.0miles/hour (35.8m/s). A police
car is initially at rest. As soon as the speeder crosses the police car the cop starts chasing the speeder
at a constant acceleration of a = 2.0m/s2. Determine the time it takes for the cop to catch up with the
speeder. Determine the distance traveled by the cop in this time.

9. (10 points.) A key falls from a bridge that is 50.0m above the water. It falls directly into a boat that
is moving with constant velocity, that was 10.0m from the point of impact when the key was released.
What is the speed of the boat?

2.4.3 Textbook problems

Homework-Problem 2.8: A hockey player ‘2’ is standing on his skates on a frozen pond when an opposing
player ‘1’, moving with a uniform speed of v1 = 2.0m/s, skates by with the puck. After 1.00 s, the first player
makes up his mind to chase his opponent. If he accelerates uniformly at a2 = 0.18m/s2, determine each of the
following.

1. How long does it take him to catch his opponent? (Assume the player with the puck remains in motion
at constant speed.)

2. How far has he traveled in that time?
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Hints:
The distance travelled by the first player is given by

x1 = v1t1, (2.32)

and the distance travelled by the second player is given by

x2 =
1

2
a2t

2
2. (2.33)

We further have t2 = t1 − 1.0 and when catch up x1 = x2.

Homework-Problem 2.11: A ball ‘1’ is thrown upward from the ground with an initial speed of v1 =
24.6m/s; at the same instant, another ball ‘2’ is dropped from a building H = 18m high. After how long will
the balls be at the same height above the ground?

Hints:
Deduce that the ball ‘1’ climbs a distance y1 given by

y1 = v1t−
1

2
gt2, (2.34)

and the ball ‘2’ falls down a distance y2 given by

y2 =
1

2
gt2. (2.35)

When the balls are at the same height we have

H = y1 + y2. (2.36)
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Chapter 3

Vector algebra

3.1 Vector

The position of an object on a plane, relative to an origin, is uniquely specified by the Cartesian coordinates
(x, y), or the polar coordinates (r; θ). The position vector is mathematically expressed in the form

~r = x î+ y ĵ, (3.1)

where î and ĵ are orthogonal unit vectors. The position vector is intuitively described in terms of its magnitude
r and direction θ. These quantities are related to each other by the geometry of a right triangle,

r =
√

x2 + y2, x = r cos θ, (3.2a)

θ = tan−1
( y

x

)

, y = r sin θ. (3.2b)

A vector ~A, representing some physical quantity other than the position vector, will be mathematically repre-
sented by

~A = Ax î+Ay ĵ, (3.3)

whose magnitude will be represented by |~A| and the direction by the angle θA.

|~A|

A
y

Ax

θA

Figure 3.1: The right triangle geometry of a vector ~A.

Lecture-Example 3.1:
Find the components of a vector ~A whose magnitude is 20.0m and its direction is 30.0◦ counterclockwise with

29
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respect to the positive x-axis.
Answer: ~A = (17.3 î+ 10.0 ĵ)m.

Lecture-Example 3.2: (Caution)
Inverse tangent is many valued. In particular,

tan θ = tan(π + θ). (3.4)

This leads to the ambiguity that the vectors, ~r = x î+ y ĵ and ~r = −x î− y ĵ, produce the same direction θ using
the formula tan−1(y/x). This should be avoided by visually judging on the angles based on the quadrants the
vector are in. Find the direction of the following two vectors:

~A = 5.0 î+ 10 ĵ, (3.5a)

~B = −5.0 î− 10 ĵ. (3.5b)

We determine tan−1(10/5) = tan−1(−10/− 5) = 63◦. Since the vector ~A is in the first quadrant we conclude

that it makes 63◦ counterclockwise w.r.t. +x axis, and the vector ~B being in the third quadrant makes 63◦

counterclockwise w.r.t. −x axis or 243◦ counterclockwise w.r.t. +x axis.

3.2 Addition and subtraction of vectors

Consider two vectors ~A and ~B given by

~A = Ax î+Ay ĵ, (3.6a)

~B = Bx î+By ĵ. (3.6b)

The sum of the two vectors, say ~C, is given by

~C = ~A+ ~B = (Ax +Bx) î+ (Ay +By) ĵ. (3.7)

The difference of the two vectors, say ~D, is given by

~D = ~A− ~B = (Ax −Bx) î+ (Ay −By) ĵ. (3.8)

It should be pointed out that the magnitudes and directions of a vector do not satisfy these simple rules. Thus,
to add vectors, we express the vectors in their component form, perform the operations, and then revert back
to the magnitude and direction of the resultant vector.

Lecture-Example 3.3: Given that vector ~A has magnitude A = |~A| = 15m and direction θA = 30.0◦

counterclockwise w.r.t x-axis, and that vector ~B has magnitude B = |~B| = 20.0m and direction θB = 45.0◦

counterclockwise w.r.t x-axis. Determine the magnitude and direction of the sum of the vectors.

• The given vectors are determined to be

~A = 13 î+ 7.5 ĵ, (3.9a)

~B = 14 î+ 14 ĵ. (3.9b)

We can show that
~C = ~A+ ~B = (27 î+ 22 ĵ)m. (3.10)
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The magnitude of vector ~C is

C = |~C| =
√

272 + 222 = 35m, (3.11)

and its direction θC counterclockwise w.r.t. x-axis is

θC = tan−1

(

22

27

)

= 39◦. (3.12)

3.3 Graphical method

Graphical method is based on the fact that the vector ~A+ ~B is diagonal of parallelogram formed by the vectors
~A and ~B.

~A

~B
~A+ ~B

~A− ~B

Figure 3.2: Graphical method for vector addition and subtraction.

Using the law of cosines,
C2 = A2 +B2 − 2AB cos θab, (3.13)

and the law of sines,
A

sin θbc
=

B

sin θca
=

C

sin θab
, (3.14)

for a triangle, one determines the magnitude and direction of the sum of vectors.

Lecture-Example 3.4: (Caution)
Inverse sine function is many valued. In particular,

sin
(π

2
− θ

)

= sin
(π

2
+ θ

)

. (3.15)

For example sin 85◦ = sin 95◦ = 0.9962. Consider the vector ~A with magnitude |~A| = 1.0 and direction θA = 0◦

w.r.t. +x axis, and another vector ~B with magnitude |~B| = 2.5 and direction θB = 60◦ clockwise w.r.t. −x

axis. Using the law of cosines the magnitude of the vector ~C = ~A+ ~B is determined as

C =
√

1.02 + 2.52 − 2× 1.0× 2.5 cos 60 = 2.18. (3.16)

Next, using the law of sines we find

2.18

sin 60
=

2.5

sin θC
→ sin θC = 0.993 → θC = 83.2◦, 96.8◦. (3.17)
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Settle this confusion by evaluating the angle between the vectors ~B and ~C, and thus determine θC = 96.8◦.

Lecture-Example 3.5: (One Two Three. . . Infinity, by George Gamow)
“There was a young and adventurous man who found among his great-grandfather’s papers a piece of parchment
that revealed the location of a hidden treasure. The instructions read:

‘Sail to North latitude and West longitude where thou wilt find a deserted island. There lieth
a large meadow, not pent, on the north shore of the island where standeth a lonely oak and a lonely pine. There
thou wilt see also an old gallows on which we once were wont to hang traitors. Start thou from the gallows
and walk to the oak counting thy steps. At the oak thou must turn right by a right angle and take the same
number of steps. Put here a spike in the ground. Now must thou return to the gallows and walk to the pine
counting thy steps. At the pine thou must turn left by a right angle and see that thou takest the same number
of steps, and put another spike in the ground. [Look] halfway between the spikes; the treasure is there.’

The instructions were quite clear and explicit, so our young man chartered a ship and sailed to the South
Seas. He found the island, the field, the oak and the pine, but to his great sorrow the gallows was gone. Too
long a time had passed since the document had been written; rain and sun and wind had disintegrated the
wood and returned it to the soil, leaving no trace even of the place where it once had stood.

Our adventurous young man fell into despair, then in an angry frenzy began to [run] at random all over the
field. But all his efforts were in vain; the island was too big! So he sailed back with empty hands. And the
treasure is probably still there.”

Show that one does not need the position of the gallows to find the treasure.

• Let the positions be oak tree: ~A, pine tree: ~B, gallows: ~G, spike A: ~SA, spike B: ~SB , treasure: ~T. Choose
the origin at the center of the line segment connecting the oak tree and pine tree. Thus we can write

~A = −d î+ 0 ĵ, (3.18a)

~B = d î+ 0 ĵ. (3.18b)

In terms of the unknown position of the gallows,

~G = x î + y ĵ, (3.19)

show that

~SA = −(y + d) î+ (x+ d) ĵ, (3.20a)

~SB = (y + d) î− (x − d) ĵ. (3.20b)

Thus, find the position of the treasure,

~T =
1

2
(~SA + ~SB) = 0 î+ d ĵ. (3.21)

3.4 Problems

3.4.1 Conceptual problems

1. The following TED-Ed YouTube video emphasizes on the dependence of the vector components on the
choice of coordinate basis vectors.

https://youtu.be/ml4NSzCQobk

https://youtu.be/ml4NSzCQobk
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Do the coordinate basis vectors, used to describe vectors, have to be orthogonal?

2. What are the similarities and differences between addition (and subtraction) of vectors in two dimensions
and addition (and subtraction) of complex numbers?

3. Is area a scalar or a vector?

4. Is time a scalar or a vector?

3.4.2 Problems based on lectures

0. (Notation:) Quantities in boldface represent vectors. For example, the vector quantity A in typography,

when written on your notebook or on a blackboard, is represented as ~A. Many textbooks use the combined
representation ~A. The quantity A stands for the magnitude of the vector ~A (in textbooks, or A in

typography, or ~A on your notebook).

1. (10 points.) Two vectors ~A and ~B have equal magnitudes of 5.00m. Vector ~A is pointing along the

negative x axis, and vector ~B makes an angle of 60◦ with positive x axis. Determine the magnitude and
direction of the vector ~A+ ~B.

2. (10 points.) Given that vector ~A has magnitude A = |~A| = 15m and direction θA = 30.0◦ counter-

clockwise w.r.t x-axis, and that vector ~B has magnitude B = |~B| = 20.0m and direction θB = 45.0◦

counterclockwise w.r.t x-axis. Determine the magnitude and direction of the sum of the vectors.

3. (10 points.) An explorer is caught in a whiteout (in which the snowfall is so thick that the ground cannot
be distinguished from the sky) while returning to base camp. He was supposed to travel due north for
4.4 km, but when the snow clears, he discovers that he actually traveled 7.8 km at 54◦ north of due east.

(a) How far must he now travel to reach base camp?

(b) In what direction must he travel?

4. (10 points.) An explorer walks along a straight path a distance d = 5.0 km at an angle 60◦ North of
East. Then, he turns right (ninety degree turn) and walks another distance d. Determine the magnitude
and direction of the final position of the explorer with respect to the initial position.

5. (10 points.) A golfer takes two strokes to putt a golf ball into a hole. On the first stroke, the ball moves
5.0m at an angle 60◦ West of North. On the second, it moves 3.0m at an angle 70◦ South of West. If
the golfer had instead hit the ball directly into the hole on the first stroke, what would have been the
magnitude and direction of the ball’s displacement?

6. (10 points.) If three vectors satisfy the relations

~A− ~B = 2~C, (3.22)

~A+ ~B = 4~C, (3.23)

where

~C = 3 î+ 4 ĵ, (3.24)

then what are ~A and ~B in component form?
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3.4.3 Textbook problems

Homework-Problem 3.7: A man pushing a mop across a floor causes it to undergo two displacements. The
first has a magnitude of 142 cm and makes an angle of 122◦ with +x axis. The resultant displacement has a
magnitude of 143 cm and is directed at an angle of 40.0◦ to +x axis. Find the magnitude and direction of the
second displacement.

• It is given that

~A = −142 sin32 î+ 142 cos 32 ĵ, (3.25a)

~B = Bx î+By ĵ, (3.25b)

~C = 143 cos40 î+ 143 sin40 ĵ, (3.25c)

such that
~A+ ~B = ~C. (3.26)

Show that ~B = 184.8 î− 28.5 ĵ, and determine |~B| = 187 cm and direction θB = 8.77◦ clockwise w.r.t. +x
axis.
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Motion in two dimensions

4.1 Motion in 2D

Motion in each (orthogonal) direction is independently governed by the respective position, velocity, and accel-
eration, with time being common to all dimensions that links together. In terms of the position in each direction
we can write the position vector as

~r(t) = x(t) î + y(t) ĵ. (4.1)

The instantaneous velocity is defined as the rate of change of position, expressed as the derivative of the position,
as

~v(t) =
d~r

dt
= vx(t) î+ vy(t) ĵ. (4.2)

The instantaneous acceleration is defined as the rate of change of velocity, expressed as the derivative of the
velocity, as

~a(t) =
d~v

dt
= ax(t) î + ay(t) ĵ. (4.3)

Lecture-Example 4.1:
A particle is moving in the xy plane. Its initial position, at time t = 0, is given given by

~r0 = (2.0 î+ 3.0 ĵ)m, (4.4)

and its initial velocity is given by

~v0 = (25 î+ 35 ĵ)
m

s
. (4.5)

Find the position and velocity of the particle at time t = 15.0 s if it moves with uniform acceleration

~a = (−1.0 î− 10.0 ĵ)
m

s2
. (4.6)

• The final position is determined using

~r(t) = ~r0 + ~v0 t+
1

2
~a t2, (4.7)

and the final velocity is determined using

~v(t) = ~v0 + ~a t. (4.8)

35
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4.2 Projectile motion

Projectile motion is described by the uniform acceleration

~a = 0 î− g ĵ, (4.9)

where g = 9.80m/s2 is the acceleration due to gravity.

Lecture-Example 4.2: (Maximum height of a projectile)
Show that the maximum height attained by a projectile is

H =
v20 sin

2 θ0
2g

, (4.10)

where v0 is the magnitude of the initial velocity and it is projected at an angle θ0.

Lecture-Example 4.3: (Range of a projectile)
Show that the range of a projectile is given by

R =
v20 sin 2θ0

g
, (4.11)

where v0 is the magnitude of the initial velocity and it is projected at an angle θ0.

• Show that the range of a projectile is a maximum when it is projected at 45◦ with respect to horizontal.

• The fastest sprint speed recorded for a human is 12.4m/s, (updated in 2015 Sep). If a person were to
jump off with this speed in a long jump event, at an angle 45◦ with respect to the horizontal, he/she
would cover a distance of 15.7m. Instead, if a person were to jump off with this speed at an angle 20◦

with respect to the horizontal, he/she would cover a distance of 10.1m. The world record for long jump
is about 9m. Apparently, the technique used by professional jumpers does not allow them to jump at
45◦ without compromising on their speed, they typically jump at 20◦. This seems to suggest that there is
room for clever techniques to be developed in long jump.

• Cheetah is the fastest land animal, about 30m/s. They cover about 7m in each stride. Estimate the
angle of takeoff for each stride, assuming a simple model.
Answer: 2◦

Lecture-Example 4.4: (Half a parabola)
An airplane flying horizontally at a uniform speed of 40.0m/s over level ground releases a bundle of food
supplies. Ignore the effect of air on the bundle. The bundle is dropped from a height of 300.0m.

• Observe that the initial vertical component of velocity of the bundle is zero, and the horizontal component
of velocity remains constant.

• Determine the time taken for the drop. (Answer: 7.8 s.) Will this time change if the the airplane was
moving faster or slower? Consider the extreme (unphysical) case when the airplane is horizontally at rest.

• Determine the horizontal distance covered by the bundle while it is in the air. (Answer: 313m.)
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• Determine the vertical and horizontal component of velocity just before it reaches the ground. (Answer:

~vf = (40.0 î − 76 ĵ)m/s.) Thus, determine the magnitude and direction of final velocity. (Answer:
|~vf | = 86m/s, θf = 62◦ below the horizontal.)

Lecture-Example 4.5: (Baseball)
A batter hits a ball with an initial velocity vi = 30.0m/s at an angle of 45◦ above the horizontal. The ball is
1.2m above the ground at the time of hit. There is 10.0m high fence, which is a horizontal distance 100.0m
away from the batter.

• Determine the horizontal and vertical components of the initial velocity. (Answer: ~vi = (21 î+21 ĵ)m/s.)

• Determine the horizontal range of the ball, ignoring the presence of the fence. (Answer: 92m.)

• Determine the time the ball takes to traverse the horizontal distance to the fence. (Answer: 4.7 s.)

• Determine the vertical distance of the ball when it reaches the fence. (Answer: -9.1m.) Thus, analyze
whether the ball clears the fence.

• Repeat the above analysis for vi = 32m/s. Does the ball clear the fence? What is the distance between
the top of the fence and the center of the ball when the ball reaches the fence? (Answer: y = 4.2m,
implying the ball hits 5.8m below the top of fence.)

• Repeat the above analysis for vi = 33m/s. Does the ball clear the fence? What is the distance between
the top of the fence and the center of the ball when the ball reaches the fence? (Answer: y = 1.0× 101m,
up to two significant digits, implying the ball is right at the top of the fence. We can not conclude if it
clears the fence accurately, without having more precise information.)

Lecture-Example 4.6: (Galileo’s thought experiment, from Dialogue Concerning the Two Chief World Sys-
tems, translated by Stillman Drake)
Hang up a bottle that empties drop by drop into a vessel beneath it. Place this setup in a ship (or vehicle)
moving with uniform speed. Will the drops still be caught in the vessel? What if the ship is accelerating?

Lecture-Example 4.7: (Bullseye)
A bullet is fired horizontally with speed vi = 400.0m/s at the bullseye (from the same level). The bullseye is a
horizontal distance x = 100.0m away.

Figure 4.1: Path of a bullet aimed at a bullseye.

• Since the bullet will fall under gravity, it will miss the bullseye. By what vertical distance does the bullet
miss the bullseye? (Answer: 31 cm.)

• At what angle above the horizontal should the bullet be fired to successfully hit the target? (Answer:
0.18◦.)
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Lecture-Example 4.8: (Simultaneously released target)
A bullet is aimed at a target (along the line). The target is released the instant the bullet is fired.

y1

y2
H

Figure 4.2: Path of the bullet (in blue) and path of the target (in red).

The path of the bullet is described by

y1 = viyt−
1

2
gt2, (4.12)

and the path of the target is described by

y2 =
1

2
gt2. (4.13)

Adding the two equations we have

H =
(y1 + y2)

sin θi
= vit, (4.14)

which is the path of the bullet moving with uniform speed vi along the hypotenuse H . Thus, the bullet does
hit the target.

4.3 Centripetal acceleration

From the definition of acceleration,

~a =
d

dt
~v, (4.15)

we can infer that uniform velocity implies zero acceleration. Here uniform means for constant with respect to
time. Here we investigate the case when the magnitude of velocity, v = |~v|, the speed, is uniform, but the
direction of speed is not constant in time.

Uniform circular motion

A particle moving in a circle of radius R with uniform speed is termed uniform circular motion. Circular motion
is periodic, so we introduce the time period T . A related quantity is the inverse of time period, the frequency,

f =
1

T
, (4.16)

which is measured in units of revolutions per unit time, or more generally as number of times per unit time.
Using the fact that

1 revolution = 2π radians (4.17)

we define the angular frequency

ω = 2πf =
2π

T
. (4.18)
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Lecture-Example 4.9: A bus comes to a bus stop every 20minutes. How frequently, in units of times per
second, does the bus come to the bus stop? (Answer: 3 times/hour.)

~rf

~ri

~vf

~vi∆θ

~rf

~ri

∆~r∆θ ~vi~vf

∆~v

∆θ

Figure 4.3: Change in position and velocity in uniform circular motion.

Magnitude of velocity in uniform circular motion

The angular frequency is the rate of change of angle θ per unit time. Thus, it is also called the angular velocity,

ω =
dθ

dt
. (4.19)

The speed in uniform circular motion

v =
2πR

T
= ωR. (4.20)

Direction of velocity in uniform circular motion

Direction of velocity is decided by the direction of change in position ∆~r in Fig. 4.3. In the limit ∆t → 0 the
instantaneous velocity is tangential to the circle.

Magnitude of acceleration in uniform circular motion

For finite ∆t we use the similarity of the triangles in Fig. 4.3 to write

|∆~v|
v

=
|∆~r|
R

. (4.21)

The magnitude of the centripetal acceleration is

ac = lim
∆t→0

|∆~v|
∆t

= lim
∆t→0

v

R

|∆~r|
∆t

= vω. (4.22)

Also, we can derive

ac = ω2R =
v2

R
= 4π2f2R =

4π2R

T 2
. (4.23)

Direction of acceleration in uniform circular motion

Direction of acceleration is decided by the direction of change in velocity ∆~v in Fig. 4.3. In the limit ∆t → 0
the instantaneous acceleration is radially inward.

Lecture-Example 4.10: (Cloverleaf)
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A typical ramp in a cloverleaf interchange design on the interstate has a radius of 50m. What is the centripetal
acceleration of a car exiting an interstate at a speed of 20m/s (∼ 45miles/hour). (Answer: 8m/s2.) Compare
this to the acceleration due to gravity g = 9.8m/s2.

Lecture-Example 4.11: (Trick riding)
In a trick ride a horse is galloping at the speed of 10m/s, in a circle of radius 6.4m. What is the centripetal
acceleration of the trick rider. (Answer: 16m/s2.) Compare this to the acceleration due to gravity g = 9.8m/s2.

Lecture-Example 4.12: (20-G centrifuge, check out this YouTube video. )
The 20-G centrifuge of NASA has a radius of 29 feet (8.8m). What is the centripetal acceleration at the
outer edge of the tube while the centrifuge is rotating at 0.50 rev/sec? (Answer: 9 g.) What is the centripetal
acceleration at 0.70 rev/sec? (Answer: 17 g.) Note that such high acceleration causes damage to capillaries, see
Table 2.3.

Lecture-Example 4.13: (Gravitropism)
The root tip and shoot tip of a plant have the ability to sense the direction of gravity, very much like smart
phones. That is, root tips grow along the direction of gravity, and shoot tips grow against the direction of
gravity. (These are associated to statocytes.) Discuss the direction of growth of a plant when placed inside a
centrifuge. What if the plant is in zero-gravity? Check out this YouTube video.

Lecture-Example 4.14: (Variation in g)
The acceleration due to gravity is given by, (as we shall derive later in the course,)

g =
GME

R2
E

= 9.82 m
s2
, (4.24)

where ME = 5.97 × 1024 kg and RE = 6.37 × 106m are the mass and radius of the Earth respectively and
G = 6.67× 10−11Nm2/kg2 is a fundamental constant. This relation does not take into account the rotation of
the Earth about its axis and assumes that the Earth is a perfect sphere.

• The centripetal acceleration at a latitude φ on the Earth is given by

4π2

T 2
E

RE = 0.034 cosφ, (4.25)

where TE = 24hours is the time period of the Earth’s rotation about its axis. It is directed towards
the axis of rotation. The component of this acceleration toward the center of the Earth is obtained by
multiplying with another factor of cosφ. The contribution to g from the rotation of the Earth is largest
at the equator and zero at the poles.

• The rotation of the Earth has led to its equatorial bulge, turning it into an oblate spheroid. That is,
the radius of the Earth at the equator is about 20 km longer than at the poles. This in turn leads to a
weaker g at the equator. The fractional change in gravity at a height h above a sphere is approximately,
for h ≪ R, given by 2h/R. For h = 42km this leads to a contribution of 0.065m/s2.

https://www.youtube.com/watch?v=FBJegTfF9Kg
https://www.youtube.com/watch?v=RxITZSEis4I
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• Contribution to g from rotation of the Earth is positive, and from the equatorial bulge is negative.
Together, this leads to the variations in g on the surface of the Earth. Nevertheless, the variations in g are
between 9.76m/s2 (in the Nevado summit in Peru) and 9.84m/s2 (in the Arctic sea), refer this article in
Geophysical Research Letters (2013). The measurement of g is relevant for determining the elevation of
a geographic location on the Earth. An interesting fact is that even though Mount Everest is the highest
elevation above sea level, it is the summit of Chimborazo in Equador that is farthest from the center of
the Earth.

Non-uniform circular motion

In terms of unit vectors r̂ and φ̂ we can express the position vector as

~r = r r̂. (4.26)

The velocity is

~v =
dr

dt
r̂+ rω φ̂, (4.27)

where we used the chain rule
dr̂

dt
=

dφ

dt

dr̂

dφ
=

dφ

dt
φ̂, (4.28)

where ω = dφ/dt. Note that the radial component of velocity is zero for circular motion. The acceleration is

~a =

(

d2r

dt2
− ω2r

)

r̂+

(

r
d2φ

dt2
+ 2ω

dr

dt

)

φ̂, (4.29)

where the term with factor 2 is the Coriolis acceleration that contributes to trade winds. For the case of circular
motion we have, using dr/dt = 0,

~a = −ω2r r̂+ r
d2φ

dt2
φ̂. (4.30)

Thus, for non-uniform motion in addition to the centripetal acceleration we have a tangential acceleration,
which increases or decreases the angular speed of the particle.

Lecture-Example 4.15:
A car is accelerating at 2.0m/s2 while driving over a hilltop (that is part of a circle of radius 300m) at the
speed of 25m/s. Determine the magnitude and direction of the total acceleration of the car when it is passing
the hilltop. (Answer: 2.9m/s2, pointing 46◦ below the horizontal.)

4.4 Galilean relativity

Let the relative positions of three particles A, B, and G be related by the relation

~rBG = ~rBA +~rAG. (4.31)

See Fig. 4.4. Taking the derivative with respect to time yields the relation between the respective relative
velocities,

~vBG = ~vBA + ~vAG. (4.32)

Taking the derivative another time yields the relativity of accelerations as measured by different observers,

~aBG = ~aBA + ~aAG. (4.33)

http://dx.doi.org/10.1002/grl.50838
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G A B

~rAG ~rBA

~rBG

Figure 4.4: Relative positions of three particles at an instant.

The richness and complexity of the seemingly simple idea of relativity is nicely captured in the following
26minute educational film, titled ‘Frames of Reference’, released in 1960, starring Profs. Ivey and Hume, and
produced by Richard Leacock: https://archive.org/details/frames_of_reference

Lecture-Example 4.16:
The speedometer of car A measures its speed (with respect to ground) as ~vAG = 70 îmiles/hour. The speedome-

ter of car B measures its speed (with respect to ground) as ~vBG = 60 îmiles/hour. Determine the velocity of
car B with respect to car A.

• If the initial distance between the cars is 1.0mile, (with car A trailing car B,) determine the time (in
minutes) it will take for car A to overtake car B. (Answer: 6min.)

Lecture-Example 4.17: (Moving walkway)
Two points inside an airport, separated by a distance of 100.0m, are connected by a (straight) moving walkway

W . The moving walkway has a velocity of ~vWG = 3.0 îm/s with respect to the ground G. A person P walks

on the moving walkway at a velocity of ~vPW = 2.0 îm/s with respect to the walkway. Determine the velocity

of the person with respect to the ground ~vPG. (Answer: 5.0 îm/s.)

• Compare the time taken for the person to walk the distance between the two points without using the
walkway to that of using the walkway. (Answer: 50 s versus 20 s.)

• Consider a kid P running on the walkway in the opposite direction with velocity ~vPW = −4.0 îm/s.

Determine the velocity of the kid with respect to the ground ~vPG. (Answer: −1.0 îm/s.) If the kid starts
from one end, determine the time taken for the kid to reach other end of the walkway. (Answer: 100 s.)

Lecture-Example 4.18: (Upstream versus downstream)
A river R is flowing with respect to ground G at a speed of vRG = 1.5m/s. A swimmer S can swim in still
water at vSR = 2.0m/s. Determine the time taken by the swimmer to swim a distance of 100.0m downstream
and then swim upstream the same distance, to complete a loop. (Answer: 229 s.)

Lecture-Example 4.19: (Boat crossing a river)

A river R is flowing with respect to ground G with velocity ~vRG = 2.0 îm/s. A boat B can move in still water
with a speed of vBR = 6.0m/s. The banks of the river are separated by a distance of 200.0m.

https://archive.org/details/frames_of_reference
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• The boat is moving with respect to river with velocity ~vBR = 6.0 ĵm/s. The boat gets drifted. Determine
the magnitude and direction of the velocity of the boat with respect to the river. (Answer: 6.3m/s at an

angle 18◦ clockwise with respect to ĵ.) How far down the river will the boat be drifted? (Answer: 67m.)

• To reach the river right across, at what angle should the boat be directed? (Answer: 20◦ anticlockwise

with respect to ĵ.) How much time does it take to reach the shore right across? (Answer: 35 s.)

Lecture-Example 4.20: (Rain)
A train T travels due South at 30m/s relative to the ground G in a rain R that is blown toward the South
by the wind. The path of each raindrop makes an angle of 70◦ with the vertical, as measured by an observer
stationary on the ground. An observer on the train, however, sees the drops fall perfectly vertically. Determine
the speed of the raindrops relative to the ground.

Lecture-Example 4.21: (Aeroplane navigation)
An aeroplane A is flying at a speed of 75m/s with respect to wind W . The wind is flowing at a speed of 20m/s
30◦ North of West with respect to ground G. In what direction should the aeroplane head to go due North?

• We have the relation
~vAG = ~vAW + ~vWG, (4.34)

where we are given

~vAG = 0 î+ vAG ĵ, (4.35a)

~vWG = −20 cos30 î+ 20 sin 30 ĵ, (4.35b)

~vAW = 75 cosα î+ 75 sinα ĵ. (4.35c)

This determines the direction to head as α = 77◦ North of East. The resultant speed of the aeroplane
due North is 83m/s.

4.5 Problems

4.5.1 Conceptual questions

1. (5 points.) Uniform velocity in both horizontal and vertical direction leads to a trajectory along a straight
line path. Uniform velocity in the horizontal direction and uniform acceleration in the vertical direction
leads to a trajectory along a parabolic path. What would be the trajectory for uniform acceleration in
both horizontal and vertical direction?

2. (5 points.) An object starts from rest and uniformly accelerates in both the horizontal and vertical
direction such that the positions x and y as a function of time are described by the equations

x =
1

2
axt

2, (4.36a)

y =
1

2
ayt

2, (4.36b)

where ax and ay are the respective accelerations in the horizontal and vertical directions. Determine the
curve that describes the trajectory of the object in the x-y plane.
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3. (5 points.) The following video by National Science Foundation, USA,

https://youtu.be/HB4ws7RoA3M

clarifies how the vertical and horizontal components of velocity change on the trajectory of a projectile
motion.

(a) What is the vertical component of velocity at the highest point in projectile motion?

(b) What is the horizontal component of velocity at the highest point in projectile motion?

(c) What is the speed (magnitude of velocity) at the highest point in projectile motion?

4. (5 points.) The following video by National STEM Centre, United Kingdom,

https://youtu.be/z8S0_SHqoeY

demonstrates a counterintuitive feature in projectile motion. Next, ponder the following. In a room devoid
of air a stuntman and a bullseye (target) are released from rest from the same height simultaneously.
During the fall, the stuntman throws a ball horizontally towards the target. Is the ball expected to hit
the target? If yes, explain. If not, why not?

5. (5 points.) A car is moving with uniform velocity. A passenger in the car tosses an orange vertically
upwards with respect to him. Will the orange return to his hands? If so, explain. If not, why not? Assume
no air resistance.

6. (5 points.) Earth rotates once around its axis in twenty four hours. One argues that in a vehicle that
could hover above ground, such that Earth rotates underneath it, we could travel to the other side of the
world in twelve hours. Is this practical?

7. (5 points.) Earth rotates around its axis. So, does a flight against the direction of rotation take longer
than a flight in the direction of rotation? Check the time of flight from New York City to Los Angeles
and from Los Angeles to New York City. Explain.

8. (5 points.) Read about the amusement ride Gravitron at

https://en.wikipedia.org/wiki/Gravitron

Look up videos posted on social media of the ride. Briefly explain the physics of the ride.

9. (5 points.) The following video by European Space Agency

https://youtu.be/Hgz7kJJSksM

shows a centrifuge used for training astronauts preparing to go to International Space Station. Inside the
centrifuge an astronaut experiences centripetal acceleration, which is percieved as (artificial) gravity. If a
ball is dropped by the astronaut while inside the centrifuge, in what direction will the ball fall?

10. (5 points.) Critically analyze the following prediction by Lord Rayleigh in his classic book on sound,
refer page 154 (page 177 as per PDF counter) at the following link,

https://archive.org/stream/theorysound02raylgoog

If the source is moving toward the observer at twice the speed of sound, while the observer
is at rest with respect to the medium of sound, the observer would hear a musical piece in
correct time and tune, but backwards.

https://youtu.be/HB4ws7RoA3M
https://youtu.be/z8S0_SHqoeY
https://en.wikipedia.org/wiki/Gravitron
https://youtu.be/Hgz7kJJSksM
https://archive.org/stream/theorysound02raylgoog
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4.5.2 Problems based on lectures

1. (10 points.) The launch speed of a projectile is three times its speed at maximum height. Find the
launch angle.

2. (10 points.) (Based on Problem 15 in Chapter 4 of textbook.) The range of a projectile is three times
its maximum height. Find the launch angle.

3. (10 points.) A student slides a mass off the top of a horizontal table. The height of the table is 1.30m.
The mass slides off the table with a horizontal velocity of 3.50m/s. How far from the base of the table
does the mass strike the floor?

4. (10 points.) A package is dropped from an aeroplane while it is moving horizontally with a speed of
45m/s at a height of 75m from the ground. What is the speed of the package right before it hits the
ground?

5. (10 points.) (Based on Example 4.4 in textbook.) A stone is thrown upward from the top of a building
at a angle of 30.0◦ to the horizontal with an initial speed of 10.0m/s. The height from which the stone
is thrown is 45.0m above the ground. How long does it take to reach the ground? How will the answer
change if the stone is thrown downward at an angle of 30.0◦ to the horizontal with an initial speed of
10.0m/s.

6. (10 points.) A placekicker must kick a football from a point 36.0m (about 40 yards) from the goal. Half
the crowd hopes the ball will clear the crossbar, which is 3.05m high. When kicked, the ball leaves the
ground with a speed of 20.0m/s at an angle of 40.0◦ to the horizontal. By how much does the ball clear
or fall short of clearing the crossbar? (Enter a negative answer if it falls short.)

7. (10 points.) A rifle is aimed at a bullseye. The muzzle speed of the bullet is 750m/s. The gun is pointed
directly at the center of the bullseye, but the bullet strikes the target 0.25m below the center. What is
the horizontal distance between the end of the rifle and the bullseye?

Centripetal acceleration:

8. (10 points.) A vinyl record on a turntable rotates at 33 1
3
revolutions per minute.

(a) What is its angular speed in radians per second?

(b) What is the linear speed of a point on the record at the needle when the needle is 15 cm from the
turntable axis?

(c) What is the linear speed of a point on the record at the needle when the needle is 7.4 cm from the
turntable axis?

9. (10 points.) Earth rotates about its axis once in 24 hours. Radius of Earth is 6400km. Earth is spherical
to a good approximation.

(a) Compute the magnitude and direction of the centripetal acceleration at the equator, due to rotation
of Earth.

(b) Compute the magnitude and direction of the centripetal acceleration at the North pole, due to
rotation of Earth.

(c) Compute the magnitude and direction of the centripetal acceleration at Carbondale (at a latitude of
38◦N) due to rotation of Earth.

10. (10 points.) The International Space Station (ISS) orbits Earth with a time period of 93minutes at an
altitude of 420 km. Radius of Earth is 6400km.

(a) Compute the frequency of ISS. Or, how many times does the ISS orbit Earth in a day?

(b) Compute the angular frequency of ISS.
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(c) Compute the orbital speed of ISS.

(d) Compute the centripetal acceleration of ISS. How will a crew member perceive this acceleration?
Compare this number to the acceleration due to gravity on the surface of Earth (g = 9.8m/s2).

11. (10 points.) A ball swings counterclockwise in a vertical circle at the end of a rope 1.00m long. When
the ball is 40.0◦ past the lowest point on its way up, its total acceleration is

(−20. î+ 15 ĵ)
m

s2
. (4.37)

For that instant determine the following.

(a) Sketch a vector diagram showing the components of its acceleration, both the î-̂j basis and in the

r̂-φ̂ basis.

(b) Determine the angle between the acceleration vector and the radial direction at the instant.

(c) Show that the acceleration in the r̂-φ̂ basis at the instant is

(−24 r̂− 5.6 φ̂)
m

s2
. (4.38)

Then, read out the magnitude of its radial acceleration,

(d) Determine the magnitude of the velocity of the ball.

Relative velocity:

12. (10 points.) A boat is able to move through still water at 20.0m/s. It makes a round trip to a town
3.0 km downstream. Assume all motion to be along a straight line. That is, the boat first travels in the
direction of river and while returning travels against the direction of river. If the river flows at 5.0m/s,
determine the time required for this round trip.

13. (10 points.) A car travels due east with a speed of 40.0 km/h. Raindrops are falling at a constant speed
vertically with respect to the ground. The traces of the rain on the side windows of the car make an angle
of 76.0◦ with the vertical.

(a) Find the speed of the rain with respect to the ground.

(b) Find the speed of the rain with respect to the car.

14. (10 points.) The wind is flowing at a speed of 20m/s in the direction 30◦ North of West with respect to
the ground. Determine the direction and speed of the aeroplane should head (with respect to the wind)
such that the aeroplane heads North (with respect to the ground) with speed 80.0m/s.



Chapter 5

Newton’s laws of motion

5.1 Laws of motion

Without precisely defining them, we assume standard notions of force and mass.

Law of inertia: Newton’s first law of motion

The concept of inertia is the content of Newton’s first law of motion. It states that, a body will maintain
constant velocity, unless the net force on the body is non-zero. It is also called the law of inertia. Velocity being
a vector, constant here means constant magnitude and constant direction. In other words, a body will move
along a straight line, unless acted upon by a force.

An inertial frame is a frame in which the law of inertia holds. A frame that is moving with constant speed
with respect to the body is thus an inertial frame, but a frame that is accelerating with respect to the body is
not an inertial frame. Einstein extended the law of inertia to non-Euclidean geometries, in which the concept
of a straight line is generalized to a geodesic.

Newton’s second law of motion

The first law of motion states that a force causes a change in velocity of the body. In the second law the change
in velocity is associated to the acceleration of the body. Newton’s second law of motion states that for a fixed
force the acceleration is inversely proportional to the mass of the body. In this sense mass is often associated
to the notion of inertia, because mass resists change in velocity. Newton’s second law of motion is expressed
using the equation

~F1 + ~F2 + · · · = m~a, (5.1)

where m is the mass of the body and ~a is the acceleration of the body. The left hand side is the vector sum of
the individual forces acting on the mass m, which is often conveniently represented by ~Fnet.

Newton’s third law of motion

A force is exerted by one mass on another mass. Newton’s third law states that the other mass exerts an equal
and opposite reaction force on the first mass.

5.2 Force of gravity

Near to the surface of Earth a body of mass m experiences a force of gravity given by

m~g, (5.2)

where |~g| = 9.8m/s2 and the force m~g is directed towards the center of Earth.

47
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Lecture-Example 5.1:
A ball of mass 1.0 kg is dropped above the surface of Earth.

• Determine the magnitude and direction of the acceleration of the ball. (Answer: 9.8m/s2 towards the
center of Earth.)

• According to Newton’s third law the Earth with a mass of mE = 5.97× 1024 kg also experiences the same
force in the opposite direction. Determine the magnitude and direction of the acceleration of the Earth
as a result. (Answer: 1.6× 10−24m/s2 towards the ball.)

5.3 Normal force

Due to the gravitational force acting on a body its tendency is to accelerate towards the center of Earth. This
tendency is resisted when the body comes in contact with the surface of another body. The component of the
force normal (perpendicular) to the plane of the surface is called the normal force, and is often represented by
~N. Typical weighing scale, using a spring, measures the normal force, which is then divided by 9.8m/s2 to
report the mass.

Lecture-Example 5.2: (Normal force)
A body of mass m = 10.0 kg rests on a weighing scale on a horizontal table.

• Determine the magnitude of the normal force acting on the mass. (Answer: 98N.)

• Determine the magnitude of the normal force acting on the mass while you push on it vertically downwards
with a force of 20N. (Answer: 120N.) Determine the reading on the scale. (Answer: 12 kg.)

• Determine the magnitude of the normal force acting on the mass while you pull on it vertically upwards
with a force of 20N. (Answer: 78N.) Determine the reading on the scale. (Answer: 8.0 kg.)

• Determine the magnitude of the normal force acting on the mass while you pull on it vertically upwards
with a force of 98N. (Answer: 0N.) Determine the reading on the scale. (Answer: 0 kg.)

• Determine the magnitude of the normal force acting on the mass while you pull on it vertically upwards
with a force of 150N. (Answer: 0N.) Describe what happens. (Answer: The mass will accelerate upwards
at 5.3m/s2.)

Lecture-Example 5.3: (Elevator)
Your mass is 75 kg. How much will you weigh on a bathroom scale (designed to measure the normal force in
Newtons) inside an elevator that is

• at rest? (Answer: 740N.)

• moving upward at constant speed? (Answer: 740N.)

• moving downward at constant speed? (Answer: 740N.)

• slowing down at 2.0m/s2 while moving upward? (Answer: 590N.)

• speeding up at 2.0m/s2 while moving upward? (Answer: 890N.)

• slowing down at 2.0m/s2 while moving downward? (Answer: 890N.)
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• speeding up at 2.0m/s2 while moving downward? (Answer: 590N.)

Lecture-Example 5.4: (Weight on anincline)
Your mass is 75 kg (or 735Newtons). How much will you weigh on a weighing scale (designed to measure the
normal force in Newtons) while standing on an incline making an angle of 30◦ with the horizontal.

Lecture-Example 5.5: (Frictionless incline)
A mass m is on a frictionless incline that makes an angle θ with the horizontal. Let m = 25.0kg and θ = 30.0◦.

θ

θ

~N

m~g

Figure 5.1: Lecture-Example 5.5

• Using Newton’s law determine the equations of motion to be

mg sin θ = ma, (5.3a)

N −mg cos θ = 0. (5.3b)

• Determine the normal force. (Answer: N = 212N.)

• Determine the acceleration of the mass. (Answer: a = 4.9m/s2.) How does the acceleration of the mass
change if the mass is heavier or lighter?

• Starting from rest how long does the mass take to travel a distance of 3.00m along the incline? (Answer:
1.1 s.)

• The optical illusion, The Demon Hill, by the artist Julian Hoeber, presumably motivated by naturally
occuring ‘Mystery Spots’, are based on this idea. Check out this video:

https://www.youtube.com/watch?v=1BMSYXK4-AI (5:16 minutes)

Lecture-Example 5.6:
A mass m is pulled on a frictionless surface by a force ~Fpull that makes an angle θ with the horizontal. Let
m = 25.0kg, Fpull = 80.0N, and θ = 30.0◦.

• Using Newton’s law determine the equations of motion to be

Fpull cos θ = max, (5.4a)

N + Fpull sin θ −mg = 0. (5.4b)

https://www.youtube.com/watch?v=1BMSYXK4-AI
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~Fpull

θ

~N

m~g

Figure 5.2: Lecture-Example 5.6

• Determine the normal force. (Answer: N = 205N.)

• Determine the acceleration of the mass. (Answer: ax = 2.77m/s2.) Starting from rest how far does the
mass move in one second?

• Discuss what happens if θ above the horizontal is increased.

• Discuss what happens if θ is below the horizontal.

Lecture-Example 5.7: (Three masses)
Three masses m1 = 10.0kg, m2 = 20.0 kg, and m3 = 30.0 kg, are stacked together on a frictionless plane. A
force ~F is exerted on m1.

m1
m2

m3~F

Figure 5.3: Lecture-Example 5.7

• Using Newton’s law determine the equations of motion to be

F − C12 = m1a, N1 = m1g, (5.5a)

C21 − C23 = m2a, N2 = m2g, C21 = C12, (5.5b)

C32 = m3a, N3 = m3g, C32 = C23. (5.5c)

Here Cij are contact forces acting on i by j. Thus, determine the acceleration and contact forces to be

a =
F

(m1 +m2 +m3)
, (5.6a)

C12 = C21 =
(m2 +m3)F

(m1 +m2 +m3)
=

5

6
F, (5.6b)

C23 = C32 =
m3F

(m1 +m2 +m3)
=

1

2
F. (5.6c)
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• Show that if the force ~F were exerted on mass m3 instead we have

C12 = C21 =
m1F

(m1 +m2 +m3)
=

1

6
F, (5.7a)

C23 = C32 =
(m1 +m2)F

(m1 +m2 +m3)
=

1

2
F. (5.7b)

while the acceleration remains the same. Discuss the difference in the stresses on the surfaces of contact
in the two cases.

5.4 Force due to tension in strings

Ropes and strings exert forces due to tension in them. In most of discussions we will assume the mass of the
rope to be negligible in comparison to the masses of the moving bodies. That is we pretend the strings to be of
zero mass.

Lecture-Example 5.8: (Double mass)
Two masses m1 and m2 are hanging from two ropes as described in Figure 5.4.

m1

m2

Figure 5.4: Lecture-Example 5.8

• Using Newton’s law determine the equations of motion to be

T1 − T2 = m1g, (5.8a)

T2 = m2g. (5.8b)

Thus, show that

T1 = (m1 +m2)g, (5.9a)

T2 = m2g. (5.9b)

• Which rope has the larger tension in it? If the two ropes are identical, which rope will break first if the
mass m2 is gradually increased?

Lecture-Example 5.9: (Atwood’s machine)
The Atwood machine consists of two masses m1 and m2 connected by a massless (inextensible) string passing
over a massless pulley. See Figure 11.7.
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~T1

~T2

m1~g

m2~g
~a1

~a2

Figure 5.5: Lecture-Example 5.9

• Massless pulley implies that |~T1| = |~T2| = T . And, inextensible string implies that |~a1| = |~a2| = a.

• Using Newton’s law determine the equations of motion to be

m2g − T = m2a, (5.10a)

T −m1g = m1a. (5.10b)

Thus, show that

a =

(

m2 −m1

m2 +m1

)

g, (5.11a)

T =
2m1m2g

(m1 +m2)
. (5.11b)

• Starting from rest how far do the masses move in a certain amount of time?

• Determine the acceleration for m2 ≫ m1 and describe the motion? Determine the acceleration for
m2 ≪ m1 and describe the motion? Plot a as a function of m2 for fixed m1.

Lecture-Example 5.10:
A mass is held above ground using two ropes as described in Figure 5.15. Let m = 20.0 kg, θ1 = 30.0◦, and
θ2 = 60.0◦.

~T1

θ1

~T2

θ2

m~g

Figure 5.6: Lecture-Example 5.10
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• Using Newton’s law determine the equations of motion to be

T1 sin θ1 + T2 sin θ2 = mg, (5.12a)

T1 cos θ1 − T2 cos θ2 = 0. (5.12b)

Then, solve these equations to find

T1 =
mg cos θ2

sin(θ1 + θ2)
, (5.13a)

T2 =
mg cos θ1

sin(θ1 + θ2)
. (5.13b)

Which rope has the larger tension in it? If the two ropes are identical, which rope will break first if the
mass is gradually increased?

• For the special case of θ1 + θ2 = π/2 verify that mg =
√

T 2
1 + T 2

2 .

Lecture-Example 5.11:
A mass m2 = 2.0 kg is connected to another mass m1 = 1.0 kg by a massless (inextensible) string passing over
a massless pulley, as described in Figure 6.4. Assume frictionless surfaces.

m2

m1

Figure 5.7: Lecture-Example 5.11

• Using Newton’s law determine the equations of motion to be

m2g − T = m2a, (5.14a)

T = m1a, (5.14b)

N1 = m1g. (5.14c)

Thus, show that

a =
m2g

m2 +m1

, (5.15a)

T =
m1m2g

m1 +m2

, (5.15b)

N1 = m1g. (5.15c)

• Starting from rest how far do the masses move in a certain amount of time?
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• Determine the acceleration for m2 ≫ m1 and describe the motion? Determine the acceleration for
m2 ≪ m1 and describe the motion? Plot a as a function of m2 for fixed m1.

Lecture-Example 5.12: (Double incline)
A mass m2 = 2.0 kg is connected to another mass m1 = 1.0 kg by a massless (inextensible) string passing over
a massless pulley, as described in Figure 5.8. Surfaces are frictionless.

θ1θ2

m1

m2

Figure 5.8: Lecture-Example 5.12

• Using Newton’s law determine the equations of motion to be

m1g sin θ1 − T = m1a, N1 = m1g cos θ1, (5.16a)

T −m2g sin θ2 = m2a, N2 = m2g cos θ2. (5.16b)

Thus, show that

a =
(m1 sin θ1 −m2 sin θ2)

(m1 +m2)
g, (5.17a)

T =
m1m2(sin θ1 + sin θ2)

(m1 +m2)
g. (5.17b)

• Starting from rest how far do the masses move in a certain amount of time?

• Show that for θ1 = θ2 = π/2 the results for Atwood machine are reproduced.

• Show that the masses do not accelerate when m1 sin θ1 = m2 sin θ2. They accelerate to the right when
m1 sin θ1 > m2 sin θ2, and they accelerate to the left when m1 sin θ1 < m2 sin θ2.

5.5 Problems

5.5.1 Conceptual questions

1. (5 points.) The gravitational force exerted by Earth, (mass M = 6.0× 1024 kg,) on a mass m = 10.0 kg
is

mg = 98N (5.18)

and points towards the center of Earth. What is the magnitude of the gravitational force exerted by the
mass m on Earth?
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2. (5 points.) A weighing scale is designed to measure the normal force acting on the object placed on the
scale. A mass m rests on this weighing scale while it is placed on the floor of an elevator. Imagine the
scenario when all the cables snap and the elevator falls freely. What does the weighing scale read while
the elevator, the scale, and the mass, are all falling freely?

3. (5 points.) The following video by North Carolina School of Science and Mathematics

https://youtu.be/MdrcyJN7Ie4?t=76

asks a question at time 1:16minutes concerning spring scales. If you hang two equal masses on the two
ends of a spring scale, what will the spring scale measure? What if the masses are not equal? Here are
the related videos:

Part 1: https://youtu.be/gO2iwVG8OgA
Part 2: https://youtu.be/MdrcyJN7Ie4
Part 3: https://youtu.be/YTPOEKHEBXY

4. (5 points.) The Atwood machine, shown as System 1 in Figure 5.9, consists of two masses m1 and m2

connected by a massless (inextensible) string passing over a massless frictionless pulley. A modified version
of the Atwood machine, shown as System 2 in Figure 5.9, consists of the same two masses m1 and m2

connected by a massless (inextensible) string passing over two massless frictionless pulleys. Which of the
two systems leads to a larger acceleration? Why?

a

System 1

a′

System 2

Figure 5.9: Problem 4

5. (5 points.) Newton’s third law states that for every action there is an equal and opposite reation. The
following video by Video From Space

https://youtu.be/ZkVU-bj9bDk

demonstrates this in the International Space Station.

6. (5 points.) A mass m rests on the surface of Earth. Earth exerts the force of gravity mg on the mass.
The surface of Earth exerts the normal force N on the mass. Are the forces mg and N acting on the mass
m action reaction pairs? Explain.

7. (5 points.) A tank filled with water is being transported in a truck. The water level in the tank is observed
to be flat while the truck is at rest. Will the water level in the tank slope forward, slope backward, or
stay flat, when the truck is moving with uniform velocity along a straight road? The following video by
Mr. Woodward

https://youtu.be/MdrcyJN7Ie4?t=76
https://youtu.be/gO2iwVG8OgA
https://youtu.be/MdrcyJN7Ie4
https://youtu.be/YTPOEKHEBXY
https://youtu.be/ZkVU-bj9bDk
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https://youtu.be/jakHjtvjT3Q

demonstrates this effect.

5.5.2 Problems based on lectures

1. (10 points.) Mass of a planet is 100 times larger than that of Earth, while the radius of the planet is ten
times larger than that of Earth. Determine the acceleration due to gravity on the surface of this planet.

2. (10 points.) Mass of Jupiter is 320 times larger than that of Earth. If you are given that the acceleration
due to gravity on Jupiter is 2.4 times larger than that on Earth, then what can you conclude about the
radius of Jupiter. (Radius of Earth is 6.4× 106m.)

3. (10 points.) Three particles have their positions on a straight line, far away from any other objects. See
Figure 5.10. The masses of these particles are m1 = 300 kg, m2 = 500kg, and m3 = 200kg. The distances
are r12 = 50m and r23 = 25m. Find the magnitude and direction of the net gravitational force acting on
mass m1.

1 2 3

r12 r23

Figure 5.10: Problem 3

4. (10 points.) A body of mass m = 10.0 kg rests on a weighing scale on a horizontal table.

(a) Determine the magnitude of the normal force acting on the mass.

(b) Determine the magnitude of the normal force acting on the mass while you pull on it vertically
upwards with a force of 20N. Determine the reading on the scale.

5. (10 points.) Your mass is 75 kg. How much will you weigh on a bathroom scale (designed to measure
the normal force in Newtons) inside an elevator that is

(a) at rest?

(b) moving upward at constant speed?

(c) slowing down at 2.0m/s2 while moving upward?

6. (10 points.) A student is skateboarding down a ramp that is 6.0m long and inclined at 15◦ with respect
to the horizontal. The initial speed of the skateboarder at the top of the ramp is 3.0m/s. Neglect friction.
See Figure 5.11.

(a) Identify the forces acting on the student. Choose a coordinate system such that the acceleration is
along one of the axis. Draw a force diagram. That is, identify the forces.

(b) Determine the acceleration of the student.

(c) Find the speed of the student at the bottom of the ramp.

(d) Determine the time taken by the student to reach the bottom of the ramp.

7. (10 points.) Three masses m1 = 10.0 kg, m2 = 20.0kg, and m3 = 30.0 kg, are stacked together on a
frictionless plane. A force F is exerted on m1.

(a) Identify the forces acting on each of the three masses.

https://youtu.be/jakHjtvjT3Q
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θ

Figure 5.11: Problem 6.

m1
m2

m3F

Figure 5.12: Problem 7.

(b) Using Newton’s law determine the equations of motion for all three masses. If Cij are contact forces
acting on mass i by mass j, determine C12.

8. (10 points.) Two masses m1 = 10.0kg and m2 = 20.0kg are stacked together on a frictionless plane. A
force F is exerted on m2. See Figure 5.13. Given F = 33N. Determine the contact force exerted by mass
m1 on mass m2.

m1
m2

F

Figure 5.13: Problem 8.

9. (10 points.) The Atwood machine consists of two masses m1 and m2 connected by a massless (inexten-
sible) string passing over a massless pulley. See Figure 11.7.

(a) Identify the forces acting on each of the two masses.

(b) Using Newton’s law determine the equations of motion for all the masses.

(c) Determine the expression for the tension in the string.

10. (10 points.) A mass is held above ground using two ropes as described in Figure 5.15. Let m = 20.0 kg,
θ1 = 30.0◦, and θ2 = 45.0◦.

(a) Identify the forces acting on the masse.

(b) Using Newton’s law determine the equations of motion for the mass.

(c) Find the tension in each of the strings.

11. (10 points.) A mass m2 = 2.0 kg is connected to another mass m1 = 1.0 kg by a massless (inextensible)
string passing over a massless pulley, as described in Figure 5.16. Surfaces are frictionless.
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Figure 5.14: Problem 9

T1

θ1

T2

θ2

m~g

Figure 5.15: Problem 10.

(a) Identify the forces acting on both the masse.

(b) Using Newton’s law determine the equations of motion for each of the masses.

(c) Determine the acceleration of the masses.
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m2

m1

Figure 5.16: Problem 11
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Chapter 6

Newton’s laws of motion: Friction

6.1 Frictional forces at an interface

While two solid surfaces are in contact, the force of friction is the force that resists the tendency of the surfaces
to move relative to each other in the lateral direction (parallel to the surface). It acts in the direction opposite
to the direction of tendency of motion.

We shall use an empirical model, by Coulomb, to model the force of friction. The Coulomb model assumes
that the force of friction is independent of the apparent contact area between two surfaces. Instead it depends
on the effective contact area between the two surfaces at the microscopic level. The effective contact area is
typically less than the apparent contact area, but it could be more too. The Coulomb model assumes that the
effective contact area is proportional to the normal force between the two surfaces. In particular, the Coulomb
model states that

Ff =











F, F < µsN, (a = 0, static case),

µsN, F = µsN, (a = 0, static case),

µkN, F > µsN, (a > 0, kinetic case),

(6.1)

where F is the sum of all forces excluding the force of friction.

Lecture-Example 6.1:
A m = 20.0kg (mg = 196N) block is at rest on a horizontal floor. The coefficient of static friction between the
floor and the block is 0.50, and the coefficient of kinetic friction between the floor and the block is 0.40.

• What is the normal force N exerted on the block by the floor? (Answer: 196N.)

• Calculate the maximum static frictional force, Ff,max = µsN , possible between the block and floor.
(Answer: 98N.)

• Calculate the kinetic frictional force, Ff = µkN , between the block and floor if the block moves on the
floor. (Answer: 78N.)

• While the block is initially at rest you exert a horizontal force of 85N on the block. Will the block move?
(Answer: No.)

Surface 1 Surface 2 µs µk

Concrete Rubber 1.0(dry), 0.3(wet) 0.6
Metal Wood 0.4 0.3
Metal Ice 0.02 0.01

Table 6.1: Approximate coefficients of friction between surfaces.
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• While the block is initially at rest you exert a horizontal force of 105N on the block. Will the block move?
If yes, what will be it’s acceleration? (Answer: Yes, a = 1.35m/s2.)

Lecture-Example 6.2:
A trunk with a weight of 196N rests on the floor. The coefficient of static friction between the trunk and the
floor is 0.50, and the coefficient of kinetic friction is 0.40.

• What is the magnitude of the minimum horizontal force with which a person must push on the trunk to
start it moving? (Answer: 98N.)

• Once the trunk is moving, what magnitude of horizontal force must the person apply to keep it moving
with constant velocity? (Answer: 78.4N.)

• If the person continued to push with the force used to start the motion, what would be the magnitude of
the trunk’s acceleration? (Answer: 0.98m/s2.)

Lecture-Example 6.3:
A car is traveling at 70.0miles/hour (= 31.3m/s) on a horizontal highway.

• What is the stopping distance when the surface is dry and the coefficient of kinetic friction µs between
road and tires is 0.60? (Answer: 83m.)

• If the coefficient of kinetic friction between road and tires on a rainy day is 0.40, what is the minimum
distance in which the car will stop? (Answer: 125m.)

Lecture-Example 6.4:
A mass m = 20.0 kg is on an incline with coefficient of static friction µs = 0.80 and coefficient of kinetic friction
µk = 0.50.

θ

θ

~N

m~g

~Ff

Figure 6.1: Lecture-Example 6.4

• Using Newton’s law determine the equations of motion to be, choosing the x axis to be parallel to the
incline,

mg sin θ − Ff = max, (6.2a)

N −mg cos θ = 0. (6.2b)
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• Let θ = 30.0◦. Determine the normal force. (Answer: 170N.) Determine the maximum static frictional
force, Ff,max = µsN , possible between the mass and the incline. (Answer: Ff,max = 136N.) Find the
net force in the lateral direction other than friction. (Answer: mg sin θ = 98N.) Determine the force of
friction on the mass. (Answer: 98N.) Will the mass move? (Answer: No.)

• Let θ = 45.0◦. Determine the normal force. (Answer: 139N.) Determine the maximum static frictional
force, Ff,max = µsN , possible between the mass and the incline. (Answer: Ff,max = 111N.) Find the
net force in the lateral direction other than friction. (Answer: mg sin θ = 139N.) Determine the force of
friction on the mass. (Answer: Ff = µkN = 70N.) Will the mass move? (Answer: Yes.) Determine the
acceleration of the resultant motion. (Answer: 3.5m/s2.)

• Critical angle: As the angle of the incline is increased, there is a critical angle when the mass begins to
move. For this case the force of friction is equal to the maximum static frictional force, Ff = µsN , and
the mass is at the verge of moving, ax = 0. Show that the critical angle is given by

θc = tan−1 µs, (6.3)

which is independent of the mass m. (Answer: θc = 38.7◦.)

• Concept question: Consider the case of a bucket resting on the inclined roof of a house. It starts to rain
and the bucket gradually fills with water. Assuming a constant coefficient of static friction between the
roof and bucket, no wind, and no tipping, when will the bucket start sliding?

• Concept question: A block is projected up a frictionless inclined plane with initial speed v0. The angle of
incline is θ = 30.0◦. Will the block slide back down?

Lecture-Example 6.5:
A mass m is held to a vertical wall by pushing on it by a force ~F exerted an angle θ with respect to the vertical.

θ

~N

m~g

~Ff

~F

Figure 6.2: Lecture-Example 6.5

• Using Newton’s law determine the equations of motion to be,

F sin θ −N = 0, (6.4a)

Ff − F cos θ −mg = 0. (6.4b)

Show that the inequality to be satisfied, for the mass to be held up, is given by

mg ≤ F (cos θ + µs sin θ). (6.5)
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6.2 Problems

6.2.1 Conceptual questions

1. (5 points.) A 10.0 kg mass rests on an incline that makes 30◦ with respect to the horizontal. Determine
the magnitude of the force of static friction acting on the mass if the coefficient of static friction between
the mass and incline is 0.80.

2. (5 points.) The following video produced by the international television program Curiosity Show, based
in Australia,

https://youtu.be/fwpZurI3oDg

demonstrates the effect of friction on moving cars. Since friction is necessary for motion would it be
correct to conclude that friction acts in the forward direction, along the direction of velocity?

3. (5 points.) A cup of coffee is on a table in an airplane flying at a constant altitude and a constant
velocity. The coefficient of static friction between the cup and the table is 0.31 and the coefficient of
kinetic friction between the cup and the table is 0.15. Suddenly, the plane accelerates forward, its altitude
remaining constant. What is the direction of the friction force with respect to the velocity of the airplane?

4. (5 points.) You are driving a car on an icy (frictionless) flat (unbanked) road. How will you maneuver
a right turn without sliding while perfectly rolling?

6.2.2 Problems based on lectures

1. (10 points.) A trunk with a weight of 196N rests on the floor. The coefficient of static friction between
the trunk and the floor is 0.50, and the coefficient of kinetic friction is 0.40.

(a) What is the magnitude of the minimum horizontal force with which a person must push on the trunk
to start it moving?

(b) Once the trunk is moving, what magnitude of horizontal force must the person apply to keep it
moving with constant velocity?

(c) If the person continued to push with the force used to start the motion, what would be the magnitude
of the trunk’s acceleration?

2. (10 points.) A car is traveling at 70.0miles/hour (= 31.3m/s) on a horizontal highway. It is brought to
a stop by slamming on the brakes, which amounts to the tires skidding (without rolling) on the road.

(a) What is the stopping distance when the surface is dry and the coefficient of kinetic friction µk between
road and tires is 0.60?

(b) If the coefficient of kinetic friction between road and tires on a rainy day is 0.20, what is the minimum
distance in which the car will stop?

3. (10 points.) A massm = 20.0kg is on an incline with coefficient of static friction µs = 0.80 and coefficient
of kinetic friction µk = 0.50.

(a) Using Newton’s law determine the equations of motion governing the motion of the mass.

(b) Let θ = 30.0◦.

i. Determine the normal force. (Answer: 170N.)

ii. Determine the maximum static frictional force, Ff,max = µsN , possible between the mass and
the incline. (Answer: Ff,max = 136N.)

iii. Find the net force in the lateral direction other than friction. (Answer: mg sin θ = 98N.)

https://youtu.be/fwpZurI3oDg
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θ

Figure 6.3: Problem 3.

iv. Determine the force of friction on the mass. (Answer: 98N.)

v. Will the mass move? (Answer: No.)

(c) Let θ = 45.0◦.

i. Determine the normal force.

ii. Determine the maximum static frictional force, Ff,max = µsN , possible between the mass and
the incline. (Answer: Ff,max = 110N.)

iii. Find the net force in the lateral direction other than friction. (Answer: mg sin θ = 139N.)

iv. Determine the force of friction on the mass. (Answer: Ff = µkN = 70N.)

v. Will the mass move? (Answer: Yes.)

vi. Determine the acceleration of the resultant motion. (Answer: 3.5m/s2.)

(d) Critical angle: As the angle of the incline is increased, there is a critical angle when the mass begins
to move. For this case the force of friction is equal to the maximum static frictional force, Ff = µsN ,
and the mass is at the verge of moving, ax = 0. Show that the critical angle is given by

θc = tan−1 µs, (6.6)

which is independent of the mass m. Find the critical angle.

4. (10 points.) A 5.0 kg block is sent sliding up a plane inclined at θ = 37◦ while a horizontal force ~F of
magnitude 50 N acts on it. The coefficient of kinetic friction between the block and plane is 0.30.

(a) What are the magnitude and direction of the block’s acceleration?

(b) The block’s initial speed is 4.0 m/s. How far up the plane does the block go?

(c) When it reaches the highest point, does it remain at rest or slide back down the plane?

5. (10 points.) A mass m2 is connected to another mass m1 = 1.0 kg by a massless (inextensible) string
passing over a massless pulley, as described in Figure 6.4. The coefficient of static friction between mass
m1 and the surface is 0.50 and the coefficient of kinetic friction between the block and plane is 0.25.

(a) Identify the forces acting on both the masses.

(b) Determine the minimum mass m2 for which the mass m1 starts moving.

(c) Determine the acceleration of the masses for m2 = 20kg.

6. (10 points.) A 10.0 kg mass is held to a vertical wall by pushing on it by a force ~F exerted horizontally.
Determine the magnitude of the minimal force F that needs to be applied for the mass to be held up. The
coefficient of static friction between the mass and the wall is 0.50, and the coefficient of kinetic friction is
0.40.

7. (10 points.) A cup of coffee is on a table in an airplane flying at a constant altitude and a constant
velocity. The coefficient of static friction between the cup and the table is 0.31 and the coefficient of
kinetic friction between the cup and the table is 0.15. Suddenly, the plane accelerates forward, its altitude
remaining constant.
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m2

m1

Figure 6.4: Problem 5

~F

Figure 6.5: Problem 6

(a) What is the direction of the friction force with respect to the velocity of the airplane?

(b) What is the maximum acceleration that the plane can have without the cup sliding backward on the
table?

8. (10 points.) A 20.0 kg block of mass rests on the floor of a bus. The coefficient of static friction between
the floor and the mass is 0.50 and the coefficient of kinetic friction is 0.40. What is the maximum
acceleration the bus can have if the block is to not slide on the floor.



Chapter 7

Newton’s laws of motion: Circular
motion

7.1 Uniform circular motion

A particle uniformly moving along a circular path is accelerating radially inward, given by

~a = −v2

R
r̂, (7.1)

where r̂ is a unit vector pointing radially outward, R is the radius of the circle, and v is the magnitude of the
uniform velocity. Newton’s law then implies that the sum of the total force acting on the system necessarily
has to point radially inward.

Lecture-Example 7.1:
A stuntman drives a car over the top of a hill, the cross section of which can be approximated by a circle of
radius R = 250m. What is the greatest speed at which he can drive without the car leaving the road at the
top of the hill?

m~g

~N

Figure 7.1: Lecture-Example 7.1

Lecture-Example 7.2:
A turntable is rotating with a constant angular speed of 6.5 rad/s. You place a penny on the turntable.

• List the forces acting on the penny.

• Which force contributes to the centripetal acceleration of the penny?
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• What is the farthest distance away from the axis of rotation of the turntable that you can place a penny
such that the penny does not slide away? The coefficient of static friction between the penny and the
turntable is 0.5.

Lecture-Example 7.3: (Motorcycle stunt)
In the Globe of Death stunt motorcycle stunt riders ride motorcycles inside a mesh globe. In particular, they
can loop vertically.

Consider a motorcycle going around a vertical circle of radius R, inside the globe, with uniform velocity.
Determine the normal force and the force of friction acting on the motorcycle as a function of angle θ described
in Figure 7.2.

m~g

~N

θ m~g

~Ff

~N
m~g

~N

Figure 7.2: Forces acting on a mass while moving in a vertical circle inside a globe.

• Using Newton’s Laws we have the equations of motion, along the radial and tangential direction to the
circle, given by

N =
mv2

R
−mg cos θ, (7.2a)

Ff = mg sin θ. (7.2b)

• Investigate the magnitude and direction of the normal and force of friction as a function of angle θ. In
particular, determine these forces for θ = 0,−90◦, 90◦. Verify that, while at θ = 90◦, the motorcycle
can not stay there without falling off unless the the centripetal acceleration is sufficiently high, that is,
mv2/R ≥ mg.

7.2 Banking of roads

Motorized cars are all around us, and we constantly encounter banked roads while driving on highways bending
along a curve. A banked road is a road that is appropriately inclined, around a turn, to reduce the chances of
vehicles skidding while maneuvering the turn. Banked roads are more striking in the case of racetracks on which
the race cars move many times faster than typical cars on a highway. Nevertheless, this ubiquitous presence of
banked roads around us does not lessen the appreciation for this striking application of Newton’s laws.

Unbanked frictionless surface

A car can not drive in a circle on an unbanked frictionless surface, because there is no horizontal force available
to contribute to the (centripetal) acceleration due to circular motion.
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Unbanked surface with friction

Consider a car moving with uniform speed along a circular path of radius R on a flat surface with coefficient of
static friction µs. Using Newton’s laws we have the equations of motion

Ff =
mv2

R
, (7.3a)

N = mg, (7.3b)

where Ff ≤ µsN . The maximum speed the car can achieve without sliding is given by

v2max = gR tan θs, (7.4)

where we used the definition of friction angle µs = tan θs.

Banked frictionless surface

Let the surface make an angle θ with respect to the horizontal. Even though there is no friction force due to
the geometry of the banking the normal force is able to provide the necessary centripetal acceleration. Using
Newton’s laws we have the equations of motion

N sin θ =
mv2

R
, (7.5a)

N cos θ = mg. (7.5b)

The speed of the car is given by
v2 = gR tan θ. (7.6)

Thus, if the car speeds up it automatically gets farther away and vice versa.

Banked surface with friction

Let us now consider the case of a banked surface with friction. In this case both the normal force and the force
of friction are available to contribute to the centripetal acceleration. There now exists a particular speed v0
that satisfies

v20 = gR tan θ, (7.7)

for which case the normal force alone completely provides the necessary centripetal force and balances the force
of gravity, see Figure 7.3. Thus, in this case, the frictional force is completely absent, as illustrated in Figure 7.3.
The physical nature of the problem, in the sense governed by the direction of friction, switches sign at speed
v0.

θ
mg

N

fs

vmin ≤ v < v0

θ
mg

N

v = v0

θ
mg

N

fs

v0 < v ≤ vmax

Figure 7.3: Forces acting on a car moving on a banked road. The car is moving into the page. The direction of
friction is inward for v0 < v ≤ vmax, outward for vmin < v < v0, and zero for v = v0.
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Let us begin by investigating what happens when the car deviates from this speed v0? If the speed of the
car is different from v0, the normal force alone cannot provide the necessary centripetal acceleration without
sliding. Thus, as a response, the frictional force gets switched on. The frictional force responds to act (inwards)
when the car moves faster than v0; this provides the additional force necessary to balance the centripetal force,
see Figure 7.3. Similarly, the frictional force acts in the negative direction (outwards) when the car moves slower

than v0, see Figure 7.3. Let the frictional force be represented by ~Ff . Thus, for the case when the frictional
force is acting inward, we have the equations of motion for the car given by,

N sin θ + Ff cos θ =
mv2

R
, (7.8a)

N cos θ − Ff sin θ = mg. (7.8b)

The equations of motion for the car when the frictional force is acting outward are given by Eqs. (7.8) by
changing the sign of Ff . Can the frictional force together with the normal force balance the centripetal force
for all speeds? No. There exists an upper threshold to speed vmax beyond which the frictional force fails to
balance the centripetal force, and it causes the car to skid outward. Similarly, there exists a lower threshold to
speed vmin below which the car skids inward. To this end it is convenient to define

Ff ≤ µsN, µs = tan θs, (7.9)

where µs is the coefficient of static friction, and θs is a suitable reparametrization of the coefficient of static
friction. The upper threshold for the speed is obtained by using the equality of Eq. (7.9) in Eq. (7.8) to yield

v2max = rg tan(θ + θs), (7.10)

where we used the definition in Eq. (7.9) and the trigonometric identity for the tangent of the sum of two angles.
Similarly, the lower threshold for the speed below which the car slides inward is given by

v2min = rg tan(θ − θs). (7.11)

In summary, at any given point on the surface of the cone, to avoid skidding inward or outward in the radial
direction, the car has to move within speed limits described by

vmin ≤ v ≤ vmax. (7.12)

7.3 Drag forces

Friction forces that are proportional to velocity are called drag forces. Let us consider the case when the friction
force is linearly proportional to velocity,

~Ff = −b~v. (7.13)

For a mass m falling under gravity we have the equation of motion

m
dv

dt
= mg − bv. (7.14)

As the mass falls it gains speed and the frictional force eventually balances the force of gravity, and from this
point on it does not accelerate. Thus, the terminal velocity is defined by requiring dv/dt = 0, that is

vT =
mg

b
. (7.15)

The equation of motion can be solved for the initial condition of the particle starting from rest, v(0) = 0, which
leads to the solution

v(t) = vT

(

1− e−
t
τ

)

, (7.16)
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t

v(t)

τ

vT

Figure 7.4: Terminal velocity for Ff ∝ v.

where τ = vT /g sets the scale for time. We make the observation that the particle never reaches the terminal
speed, it approaches it at infinite time.

Lecture-Example 7.4: (Time constant Ff ∝ v)
Show that the velocity of the particle at time t = τ = vT /g, during the fall is

v(τ) = vT

(

1− 1

e

)

∼ 0.632 vT . (7.17)

• Evaluate the time constant τ for the case vT = 1.0 cm/s. (Answer: τ = 1.0ms.)

Let us consider the case when the friction force is quadratically proportional to velocity,

Ff =
1

2
DρAv2, (7.18)

where A is the area of crosssection, ρ is the density of the medium, and D is the dimensionless drag coefficient.
For a mass m falling under gravity we have the equation of motion

m
dv

dt
= mg − Ff . (7.19)

The terminal velocity, when dv/dt = 0, now is given by

vT =

√

2mg

DρA
. (7.20)

The equation of motion can be solved for the initial condition of the particle starting from rest, v(0) = 0, which
leads to the solution

v(t) = vT

(

1− e−
2t
τ

)

(

1 + e−
2t
τ

) , (7.21)

where τ = vT /g again sets the scale for time.

Lecture-Example 7.5: (Time constant for Ff ∝ v2)
Show that the velocity of the particle at time t = τ = vT /g, during the fall is

v(τ) = vT

(

1− 1
e2

)

(

1− 1
e2

) ∼ 0.762 vT . (7.22)
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t

v(t)

τ

vT

Figure 7.5: Terminal velocity for Ff ∝ v2.

7.4 Problems

7.4.1 Conceptual questions

1. (5 points.) You are driving a car on an icy (frictionless) flat (unbanked) road. How will you maneuver
a right turn without sliding while perfectly rolling?

2. (5 points.) Consider a balloon filled with air, and another balloon filled with helium. Helium being
lighter than air tends to rise up in air. While a car is taking a circular turn will a helium balloon tend to
move radially inward or radially outward? The following video by Imagination Station in Toledo, Ohio,

https://youtu.be/2-UzBitLmf8

demonstrates this.

3. (5 points.) The following YouTube video by 3RDFlix

https://youtu.be/eGZWVwcaq0U

describes banking of roads. While taking a turn a car tends to skid outward if it goes too fast, then, do
you expect it to slide inward if it goes too slow?

7.4.2 Problems based on lectures

1. (10 points.) A typical ramp in a cloverleaf interchange design on the interstate has a radius of 60.0m.
What is the centripetal acceleration of a car exiting an interstate at a speed of 20.0m/s (∼ 45miles/hour).
Compare this to the acceleration due to gravity g = 9.8m/s2.

2. (10 points.) Determine the magnitude of the centripetal acceleration at Austin, Texas, (latitude 30◦N)
due to rotation of Earth about its axis. Illustrate the direction of this centripetal acceleration unambigu-
ously. (Radius of Earth is 6.4× 106m.)

3. (10 points.) If a car goes through a curve too fast, the car tends to slide out of the curve. For a banked
curve with friction, a frictional force acts on a fast car to oppose the tendency to slide out of the curve;
the force is directed down the bank (in the direction water would drain). Consider a circular curve of
radius R = 200 m and bank angle θ, where the coefficient of static friction between tires and pavement is
µs. A car is driven around the curve.

(a) Find an expression for the car speed vmax that puts the car on the verge of sliding out.

(b) In kilometers per hour, evaluate vmax for a bank angle of θ = 10◦ and for µs = 0.60.

https://youtu.be/2-UzBitLmf8
https://youtu.be/eGZWVwcaq0U
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(c) In kilometers per hour, evaluate vmax for a bank angle of θ = 10◦ and for µs = 0.050.

This should explain why accidents occur in highway curves when icy contions are not obvious to drivers,
who tend to drive at normal speeds.

4. (10 points.) When a small 2.0 g coin is placed at a radius of 5.0 cm on a horizontal turntable that makes
three full revolutions in 3.14 s, the coin does not slip.

(a) What is the coin’s speed?

(b) What is the magnitude and direction of the coin’s acceleration?

(c) What is the magnitude and direction of the frictional force on the coin?

(d) If you learn that the coin is on the verge of slipping when it is placed at a radius of 10 cm. What is
the coefficient of static friction between coin and turntable?

5. (10 points.) A stuntman drives a car over the top of a hill, the cross section of which can be approximated
by a circle of radius R = 150m. See Figure 7.6. What is the greatest speed at which he can drive without
the car leaving the road at the top of the hill?

Figure 7.6: Problem 5

6. (10 points.) A stuntman whose mass is 75 kg drives a car at a uniform speed of 30.0m/s through the
bottom of a valley, the cross section of which can be approximated by a circle of radius R = 150m. What
is the normal force acting on the stuntman while crossing the deepest part of the valley?

Figure 7.7: Problem 6

7. (10 points.) In the Globe of Death stunt motorcycle stunt riders ride motorcycles inside a mesh globe. In
particular, they can loop vertically. Consider a motorcycle going around a vertical circle of 20.0m radius,
inside the globe, with uniform velocity. Refer Figure 7.8. Determine the minimum speed necessary for the
motorcycle to stay in contact with the globe during the complete vertical circle.

8. (10 points.) Consider the case of drag force that is linearly proportional to velocity. For a mass m falling
under gravity and experiencing such a drag force after starting from rest we have the equation of motion

m
dv

dt
= mg − bv, (7.23)
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m~g

~N

m~g
~N

Figure 7.8: Forces acting on a mass while moving in a vertical circle inside a globe.

which leads to the solution
v(t) = vT

(

1− e−
t
τ

)

, (7.24)

where the terminal velocity vT is defined by requiring dv/dt = 0, that is

vT =
mg

b
(7.25)

and τ = vT /g is the time constant and sets the scale for time. Given vT = 9.8mm/s, determine the time
it takes for the mass to attain 95% of the terminal velocity.

9. (20 points.) Consider the case when the friction force is quadratically proportional to velocity,

Ff =
1

2
DρAv2, (7.26)

where A is the area of crosssection of the object, ρ is the density of the medium, and D is a dimensionless
drag coefficient. This should be contrasted with the case when the drag is linear in velocity. Typically,
for small speeds, or when the size of the object is small, the drag force is linear in velocity. This is the
case for motion in a highly viscous fluid, or for micron sized organisms in water. On the other hand, a
sky diver, or a car on an interstate, experience quadratic drag forces. For a mass m falling under uniform
gravity we have the equation of motion

m
dv

dt
= mg − Ff . (7.27)

Show that the terminal velocity, when dv/dt = 0, is given by

vT =

√

2mg

DρA
. (7.28)

What is the terminal speed of a 6.00 kg spherical ball that has a radius of 3.00 cm and a drag coefficient
of 1.60? The density of the air through which the ball falls is 1.20 kg/m3



Chapter 8

Work and Energy

8.1 Scalar product

Scalar product of two vectors

~A = Ax î+Ay ĵ+Az k̂, (8.1a)

~B = Bx î+By ĵ+Bz k̂, (8.1b)

is given by
~A · ~B = AB cos θ = AxBx +AyBy +AzBz, (8.2)

where θ is the angle between the two vectors. The scalar product is a measure of the component of one vector
along another vector.

8.2 Work-energy theorem

Starting from Newton’s law
~F1 + ~F2 + . . . = m~a, (8.3)

and integrating on both sides along the path of motion, we derive the work-energy theorem

W1 +W2 + . . . = ∆K, (8.4)

where Wi is the work done by the force ~Fi, (i = 1, 2, . . . ,) and ∆K is the change in kinetic energy.

Work done by a force

Work done by a force ~F on mass m while displacing it from an initial point ~ri to a final ~rf , along a path P , is
given by

W =

∫ ~rf

~ri,P

d~r · ~F. (8.5)

Work done is measured in the units of energy, Joule=Newton ·meter.

Kinetic energy

The energy associated with the state of motion, the kinetic energy, is

K =
1

2
mv2, (8.6)

where v is the magnitude of the velocity of mass m.

75
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Lecture-Example 8.1: (Area under the force-position graph.)
Consider the motion of a mass m under the action of a force

F = −kx, (8.7)

where k is a constant. Show that the work done by the force is equal to the area under the force-position graph.

x

F

xi xf

Figure 8.1: A Force-position graph.

• The work done by the force is

W =

∫ xf

xi

(−kx) dx = −1

2
k(x2

f − x2
i ). (8.8)

• Show that the area under the force-position graph is the sum of the area of a triangle and a rectangle,

W = −1

2
k(xf − xi)

2 − kxi(xf − xi). (8.9)

Lecture-Example 8.2:
Consider a mass m = 25kg being pulled by a force Fpull = 80.0N, exerted horizontally, such that the mass
moves, on a horizontal surface with coefficient of kinetic friction µk = 0.30. Assume that the mass starts from
rest. We would like to determine the final velocity vf after the mass has moved a horizontal distance d = 10.0m.

• We identify four forces acting on the mass and write Newton’s law for the configuration as

m~g+ ~N+ ~Fpull + ~Ff = m~a. (8.10)

• Work done by the individual force are

Wpull = Fpulld cos 0 = Fpulld = 800 J, (8.11a)

Wg = mgd cos 90 = 0 J, (8.11b)

WN = Nd cos 90 = 0 J, (8.11c)

Wf = Ffd cos 180 = −Ffd = −µkNd = −µkmgd = −735 J, (8.11d)

where we used Ff = µkN , and then used Newton’s law in the vertical y-direction to learn that N = mg.
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~Fpull
~Ff

~N

m~g

Figure 8.2: Lecture-Example 8.2

• The total work done by the sum of all the forces is

Wpull +Wg +WN +Wf = Fpulld− µkmgd = 65 J. (8.12)

• Using the work-energy theorem and using vi = 0 we have

Wpull +Wg +WN +Wf =
1

2
mv2f . (8.13)

Using Eq. (8.12) we then have

Fpulld− µkmgd =
1

2
mv2f . (8.14)

Substituting numbers we can determine vf = 2.28m/s.

Lecture-Example 8.3:
Consider a mass m = 25kg being pulled by a force Fpull = 80.0N, exerted along a line making angle θ = 30.0◦

above the horizontal, such that the mass moves, on a horizontal surface with coefficient of kinetic friction
µk = 0.30. Assume that the mass starts from rest. Determine the final velocity vf after the mass has moved a
horizontal distance d = 10.0m.

~Fpull

θ~Ff

~N

m~g

Figure 8.3: Lecture-Example 8.3

• The work done by the individual forces are

Wpull = Fpulld cos θ = 693 J. (8.15a)

Wg = mgd cos 90 = 0 J. (8.15b)

WN = Nd cos 90 = 0 J. (8.15c)

Wf = Ffd cos 180 = −µkNd = −µk(mg − Fpull sin θ)d = −615 J. (8.15d)

We used N = mg − µkFpull sin θ, a deduction from the y-component of Newton’s law.
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• Using the work energy theorem we obtain

Kf = Fpulld(cos θ + µk sin θ)− µkmgd, (8.16)

which leads to vf = 2.50m/s.

• Discussion: Observe that this velocity is greater than the velocity calculated for the case θ = 0◦, after
Eq. (8.14). When exerted at an angle the force contribution is less in the direction of motion. But, the
normal force decreases in this case and leads to reduction in the friction too. This suggests that there is
an optimum angle θ for which the final velocity is maximum. Presuming Kf > 0 and N > 0, determine
the angle θmax when the final velocity is a maximum. This is determined by the condition

∂Kf

∂θ
= 0, (8.17)

which is satisfied when

tan θmax = µk, (8.18)

corresponding to θmax = 16.7◦. Show that the maximum velocity and thus the maximum kinetic energy
is then given by

Kmax
f = Fpulld

√

1 + µ2
k − µkmgd. (8.19)

Lecture-Example 8.4:
A mass m = 25kg slides down an inclined plane with angle θ = 30.0◦. Assume coefficient of kinetic friction
µk = 0.30. Assume that the mass starts from rest. Determine the final velocity vf after the mass has moved a
distance d = 10.0m along the incline.

• Determine the work done by the three individual forces.

• Using the work-energy theorem deduce

Kf = mgd sin θ − µkmgd cos θ. (8.20)

This leads to vf = 6.86m/s.

• Observe that the final velocity is independent of mass m.

Lecture-Example 8.5:
A mass undergoes uniform circular motion, that is, it moves along a circle at constant speed.

• What is the work done by the net force on the mass? (Hint: Determine the direction of the acceleration
of the mass at a particular instant? Determine the direction of the net force acting on the mass at this
instant? Determine the direction of displacement at this particular instant?)

• What is the change in the kinetic energy of the mass, while it goes around the circle three times?
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8.3 Conservative forces and potential energy

The work done by a conservative force is independent of the path taken by the mass. Thus, the work done
by a conservative force is completely determined by the initial and final position of the mass. That is, the
work done by the force is conveniently defined as the negative change in potential energy U associated with the
conservative force,

W =

∫ ~rf

~ri

d~r · ~F = −∆U. (8.21)

The work-energy theorem, with emphasis on this distinction, is

(W nc
1 +W nc

2 + . . .) + (W c
1 +W c

2 + . . .) = ∆K, (8.22)

where ‘nc’ in superscript stands for non-conservative force and ‘c’ in superscript stands for conservative force.
It is then expressed in the form

(W nc
1 +W nc

2 + . . .) = ∆K + (∆U1 +∆U2 + . . .). (8.23)

Thus, if there are no non-conservative forces acting on the system, the change in energy of the system is
independent of the path and is completely determined by the initial and final positions.

Gravitational potential energy

The force of gravity is a conservative force. The work done by the gravitational force is completely determined
by the change in height of the mass m,

Wg = −mg∆y = −∆Ug, (8.24)

where ∆y = yf − yi. It depends only on the initial and final heights. Thus, it is conveniently expressed in terms
of the gravitational potential energy function

Ug = mgy. (8.25)

Lecture-Example 8.6:

• Determine the work done by force of gravity in the following processes.

1. A person lifts am = 3.0 kg block a vertical distance h = 10.0m and then carries the block horizontally
a distance x = 50.0m.

2. A person carries the block horizontally a distance x = 50.0m and then lifts it a vertical distance
h = 10.0m

3. A person carries the block along the diagonal line.

• Observe that the work done by the force of gravity is independent of the path. Observe that the work
done by force of gravity is zero along a closed path. Observe that the force of gravity does not do any
work while moving horizontally. An arbitrary path can be broken into vertical and horizontal sections,
which corresponds to path independence.

Lecture-Example 8.7:
A mass of m = 25.0kg slides down a frictionless incline that makes an angle of θ = 30.0◦ with the horizontal.
Assume that the mass starts from rest. The two forces acting on the mass during the slide are the normal force
and the force of gravity. The mass slides d = 10.0m along the incline.
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• Work-energy theorem states
WN +Wg = ∆K. (8.26)

The work done by the normal force is zero,
WN = 0. (8.27)

The work done by the force of gravity on the mass is

Wg = mgd cos(90− θ) = mgd sin θ = 1225 J. (8.28)

• The change in gravitational potential energy is

∆Ug = −Wg = −1225 J. (8.29)

Since WN = 0, the change in kinetic energy of the mass is equal to the work done by the force of gravity,

∆K = Wg = 1225 J. (8.30)

The velocity of the mass at the end of the slide is then determined to be 9.90m/s.

Lecture-Example 8.8: (Roller coaster)
A roller coaster of mass m = 500.0kg moves on the curve described in Figure 8.4. Assume frictionless surface.
It starts from rest, vA = 0m/s at point A height hA = 40.0m.

O

A

B

C

D

E

F

G

Figure 8.4: Lecture-Example 8.8.

• Work-energy theorem states
WN +Wg = ∆K. (8.31)

Show that the work done by the normal force is zero, WN = 0. Thus, conclude

∆K +∆Ug = 0, or Ki + Ui = Kf + Uf . (8.32)

• Determine the velocity of the mass at points A to G, given hB = 20.0m, hC = 30.0m, hD = 10.0m,
hE = 20.0m, hF = 0m, hG = 45.0m. (Answer: See Table 8.1.) Note that the above results are
independent of the mass.

• The roller coaster will not reach the point G because it does not have sufficient total energy.
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point h v U K U+K
A 40.0m 0m/s 196kJ 0 kJ 196 kJ
B 20.0m 19.8m/s 98 kJ 98 kJ 196 kJ
C 30.0m 14.0m/s 147kJ 49 kJ 196 kJ
D 10.0m 24.3m/s 49 kJ 147kJ 196 kJ
E 20.0m 19.8m/s 98 kJ 98 kJ 196 kJ
F 0m 28m/s 0 kJ 196kJ 196 kJ
G 45.0m - - - -

Table 8.1: Lecture-Example 8.8.

Lecture-Example 8.9:
Figure 8.11 shows a pendulum of length L = 3.0m and mass m = 5.0 kg. It starts from rest at angle θ = 30.0◦.
Determine the velocity of the mass when θ = 0.

θ

L

h

Figure 8.5: Lecture-Example 8.9.

• Work-energy theorem states

WT +Wg = ∆K. (8.33)

Show that the work done by the tension in the rod is zero,

WT = 0. (8.34)

Using h = L− L cos θ, we have

mghi +Ki = mghf +Kf . (8.35)

• How much work does its weight do on the ball?

• What is the change in the gravitational potential energy of the ball Earth system?

• What is the kinetic energy of the ball at its lowest point?

• What is the velocity of the ball at its lowest point?

• If mass m were doubled, would the velocity of the ball at its lowest point increase, decrease, or remain
same?
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Elastic potential energy of a spring

Elastic materials, for example a spring, when stretched exhibit a restoring force in the opposite direction of the
stretch. This is stated as Hooke’s law,

F = −kx, (8.36)

where for the case of springs k is a material dependent quantity called the spring constant. The work done by
an elastic force is

Ws =

∫ xf

xi

(−kx)dx = −
(

1

2
kx2

f − 1

2
kx2

i

)

. (8.37)

Thus, using W = −∆U , we read out the elastic potential energy function

Us =
1

2
kx2. (8.38)

Lecture-Example 8.10: (Spring constant)
A mass of 5.0 kg is hung using a spring. At equilibrium the spring is stretched 5.0 cm. Determine the spring
constant.

• At equilibrium the force of gravity balances the elastic restoring force,

kx = mg. (8.39)

(Answer: k = 980 ∼ 103N/m.) This could be the spring constant of a spring in a simple weighing scale.

• A car weighing 2000kg is held by four shock absorbers. Thus, each spring gets a load of 500kg. At
equilibrium if the spring is stretched by 5.0 cm, determine the spring constant of a typical shock absorber.
(Answer: k ∼ 105N/m.)

Lecture-Example 8.11:
A mass m slides down a frictionless incline, starting from rest at point A. After sliding down a distance L
(along the incline) it hits a spring of spring constant k at point B. The mass is brought to rest at point C when
the spring is compressed by length x. See Figure 8.6.

C
B

A

L

x

Figure 8.6: Lecture-Example 8.11

• Using work-energy theorem we have
WN +Wg +Ws = ∆K. (8.40)

Show that the work done by the normal force is zero, WN = 0. Thus, derive

KA + Ug
A + Us

A = KB + Ug
B + Us

B = KC + Ug
C + Us

C . (8.41)
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• Show that the velocity of the mass at point B is given by

v2B = 2gL sin θ. (8.42)

• Show that the maximum compression x in the spring at point C is given by the quadratic equation,

x2 − 2x0x− 2x0L = 0, (8.43)

in terms of the compression x0 in the spring at equilibrium, given by

x0 =
mg

k
sin θ. (8.44)

Thus, we have

x = x0 ±
√

x0(x0 + 2L). (8.45)

For x0 ≪ 2L, show that the solution has the limiting form

x ∼
√

2x0L. (8.46)

For 2L ≪ x0, show that the solution has the limiting form x ∼ L.

Lecture-Example 8.12:
A mass m = 20.0 kg slides down a frictionless incline, starting from rest at point A at height h = 1.0m. After
sliding down the incline it moves horizontally on a frictionless surface before coming to rest by compressing a
spring of spring constant k = 2.0× 104N/m by a length x. See Figure 8.12.

θ
CB

A

h
x

Figure 8.7: Lecture-Example 8.12

• Using work-energy theorem we have

WN +Wg +Ws = ∆K. (8.47)

Show that the work done by the normal force is zero, WN = 0. Thus, derive

KA + Ug
A + Us

A = KB + Ug
B + Us

B = KC + Ug
C + Us

C . (8.48)

• Determine the velocity of the mass at point B. (Answer: 4.4m/s.)

• Determine the maximum compression x in the spring. (Answer: 14 cm.)
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8.4 Problems

8.4.1 Conceptual questions

1. (5 points.) The normal force is always pointed normal to a surface. What is the work done by a normal
force acting on a block of mass sliding down an incline plane? Under what circumstances can a normal
force do non-zero work?
Solution: Consider lifting a block vertically.

2. (5 points.) Can kinetic energy be negative?

3. (5 points.) You climb up a stair and return back to where you started. What is the work done by the
gravitational force acting on you during the round trip?

4. (5 points.) The following YouTube video by Interesting Engineering,

https://youtu.be/eoI98gjhx3Q,

describes the engineering behind aircraft catapult technology. Estimate the spring constant of an aircraft
catapult.
Solution: As per the video the aircraft reaches a speed of 165knots (∼ 85m/s) in 2.5 seconds. Using
kx = ma, with a = v/t, presuming mass of aircraft to be about 15,000kg, and x = 91m, we obtain
k ∼ 5000N/m.

5. (5 points.) The following YouTube video by TED-Ed,

https://youtu.be/A-QgGXbDyR0,

discusses perpetual motion machines. Why is Bhaskara’s wheel not a perpetual motion machine?

8.4.2 Problems based on lectures

1. (10 points.) Consider a mass m = 25kg being pulled by a force Fpull = 80.0N, exerted horizontally, such
that the mass moves, on a horizontal surface with coefficient of kinetic friction µk = 0.30. See Figure 8.8.
Assume that the mass starts from rest. We would like to determine the final velocity vf after the mass
has moved a horizontal distance d = 10.0m.

~Fpull

Figure 8.8: Problem 1.

(a) Identify the forces acting on the mass and write Newton’s equations of motion for the configuration.

(b) Compute the work done by each of the individual force. In particular, what is the work done by the
force of pull, and the force of friction?

(c) Determine the total work done by the sum of all the forces acting on the mass.

(d) Using the work-energy theorem to determine the final velocity.

https://youtu.be/eoI98gjhx3Q
https://youtu.be/A-QgGXbDyR0
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2. (10 points.) A mass m = 25kg slides down an inclined plane with angle θ = 30.0◦. Assume coefficient
of kinetic friction µk = 0.30. Assume that the mass starts from rest. Determine the final velocity vf after
the mass has moved a distance d = 10.0m along the incline.

3. (10 points.) A mass of m = 25.0kg slides down a frictionless incline that makes an angle of θ = 30.0◦

with the horizontal. Assume that the mass starts from rest. The two forces acting on the mass during
the slide are the normal force and the force of gravity. The mass slides d = 10.0m along the incline.

(a) Determine the work done by the force of gravity.

(b) Determine the change in the gravitational potential energy of the mass.

(c) Determine the change in the kinetic energy of the mass.

4. (10 points.) A 25 kg mass slides down an inclined plane. Determine the work done by the force of friction
while while it falls a vertical height of h = 10.0m and gains a speed of 5.0m/s starting from rest.

h

Figure 8.9: Problem 4.

5. (10 points.) A roller coaster of mass m = 500.0kg moves on the curve described in Figure 8.10. Assume
frictionless surface. It starts from rest, vA = 0m/s at point A height at hA = 40.0m.

O

A

B

C

D

E

F

G

Figure 8.10: Problem 5.

(a) What is the work done by the normal force?

(b) Determine the velocity of the mass at point E, given hE = 20.0m.

(c) How does your result depend on the mass.

6. (10 points.) Figure 8.11 shows a pendulum of length L = 3.0m and mass m = 5.0 kg. It starts from rest
at angle θ = 30.0◦. Determine the velocity of the mass when θ = 0.
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θ

L

Figure 8.11: Problem 6.

7. (10 points.) A mass m = 20.0kg slides down a frictionless incline, starting from rest at point A at height
h = 1.0m. After sliding down the incline it moves horizontally on a frictionless surface before coming to
rest by compressing a spring of spring constant k = 2.0× 104N/m by a length x. See Figure 8.12.

θ
CB

A

h
x

Figure 8.12: Problem 7.

(a) Determine the velocity of the mass at point B.

(b) Determine the maximum compression x in the spring.

8. (10 points.) A 3.0 × 102 kg mass slides down a frictionless incline, starting from rest at point A. The
incline makes an angle of 30◦ with respect to the horizontal. After sliding down a distance L = 2.0m
(along the incline) it hits a spring of spring constant 4.0× 104N/m at point B. The mass is brought to
rest at point C when the spring is compressed by length x. See Figure 8.13. Determine the compression
x.

C
B

A

L

x

Figure 8.13: Lecture-Example 8.12



Chapter 9

Energy diagrams and stability analysis

9.1 Potential energy diagrams

In the absence of non-conservative forces we have

∆K +∆U = 0, (9.1)

which allows us to define the total energy as

E =
1

2
mv2 + U. (9.2)

Further, since the work done by conservative forces is independent of the path we can conclude (in one-dimension)
that the force is the negative derivative of the potential energy U with respect to position

F = −∂U

∂x
. (9.3)

Thus, force is a manifestation of the system trying to minimize its potential energy. In three dimensions we
have

F = − ~∇U = −î
∂U

∂x
− ĵ

∂U

∂y
− k̂

∂U

∂z
. (9.4)

The system is said to be at equilibrium if the force acting on the system is zero. These are called the
extremum points in the potential energy profile, where the force (given by the slope) is zero. An extremum
point x0 is a stable point, an unstable point, or a saddle point,

∂2U

∂x2

∣

∣

∣

x=x0











> 0, (stable point),

< 0, (unstable point),

= 0, (stable, unstable, or a saddle point).

(9.5)

Lecture-Example 9.1: (Central force)
The potential energy of a particle moving in three dimensions, described by the rectangular coordinates x, y,
and z, is given by the function

U(x) =
a

r
, r =

√

x2 + y2 + z2, a > 0. (9.6)

• Determine the expression for the force when the particle is at a distance r, at point (x, y, z), from the
origin.
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• Plot the potential energy with respect to distance r. Plot the magnitude of the force with respect to
distance r,

• Is the force attractive (directed towards the origin) or repulsive (directed away from origin)?

• Repeat your analysis for a < 0.

Lecture-Example 9.2:
Consider the potential energy curve shown in the figure below.

0 1 2 3 4
0

−1

x in meters

U(x) in Joules

Figure 9.1: Lecture-Example 9.2

1. Determine whether the component of force Fx is positive, negative, or zero, at x = 3m.

2. Sketch the curve for Fx versus x from x = 0m to x = 4m.

Lecture-Example 9.3:
The potential energy of a particle moving along the x axis is given by

U(x) = ax2 − bx4, a > 0, b > 0. (9.7)

• Plot U(x) with respect to x.

• Determine the points on the x axis when the force on the particle is zero, that is, the particle is in
equilibrium.

• What can you conclude about the stability of the particle at these points.

Lecture-Example 9.4: (Kepler problem)
Consider the potential energy curve shown in Figure 9.3 below with respect to distance r, which is given by the
expression (r > 0)

U(r) =
β

2r2
− α

r
, α > 0, β > 0. (9.8)
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x

U(x)

Figure 9.2: Lecture-Example 9.3

r

U(r)

r0

U0

Figure 9.3: Lecture-Example 9.4

• Determine the distance r0 at which the force corresponding to this potential energy is zero.

• Determine the potential energy U0 when the force is zero.

• Given that the total energy E of the system is the sum of kinetic energy K and potential energy U ,

E = K + U, (9.9)

what is the maximum and minimum energy allowed by the system?
Hint: K > 0.

• Given U0 < E < 0. Total energy is conserved. Determine the range of r allowed. In particular, find the
maximum and minimum values allowed for r.

9.2 Problems

9.2.1 Conceptual questions

1. (5 points.) The following YouTube video by Khan Academy,
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https://youtu.be/iba4gUeQN0w,

describes conservative forces. List the conservative forces you have come across.

2. (5 points.) A simple rigid pendulum has how many equilibrium points? Is one of them an unstable
equilibrium point? After answering the question check out the following YouTube video by Steve Mould,

https://youtu.be/gMAKamGIiMc,

which behaves like a Kapitza pendulum.

3. (5 points.) The total energy E of a system is the sum of kinetic energy K and a potential energy U ,
given by

E = K + U, (9.10)

where the potential energy as a function of distance r > 0 is shown in Figure 9.3. Determine if there is
a restriction on the amount of total energy the system can have. In particular, determine the maximum
and minimum total energy the system could have? Explain.
Hint: Kinetic energy K ≥ 0.

9.2.2 Problems based on lectures

1. (10 points.) Consider the potential energy curve shown in Figure 9.4.

0 1 2 3 4
0

−1

x in meters

U(x) in Joules

Figure 9.4: Problem 1.

(a) What is the potential energy in Joules when the associated force is zero?

(b) Sketch the curve of force versus x from x = 0m to x = 4m.

(c) For what range of x is the force repulsive?

(d) For what range of x is the force attractive?

2. (10 points.) The potential energy of a particle moving along the x axis is given by

U(x) = ax2 − bx4, a = −4.0
J

m2
, b = −1.0

J

m4
. (9.11)

Plot of U(x) with respect to x is shown in Figure 9.5.

(a) Determine the points on the x axis where the potential energy is zero.

https://youtu.be/iba4gUeQN0w
https://youtu.be/gMAKamGIiMc
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x

U(x)

Figure 9.5: Lecture-Example 9.4

(b) Determine the points on the x axis where the force on the particle is zero.

(c) Evaluate
d2U

dx2
(9.12)

at each of the points where the force is zero. What can you conclude about the stability of the
particle at the points where the force is zero? That is, is it a stable point or an unstable point?

(d) For what range of x is the force repulsive?

(e) For what range of x is the force attractive?

3. (10 points.) Consider the potential energy curve shown in Figure 9.6, which is given by the expression
(r > 0)

U(r) =
β

2r2
− α

r
, α = −1.0 Jm, β = −2.0 Jm2. (9.13)

r

U(r)

Figure 9.6: Lecture-Example 9.4

(a) Determine the points on the x axis where the potential energy is zero.
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(b) Determine the points on the x axis where the force on the particle is zero.

(c) Evaluate
d2U

dr2
(9.14)

at each of the points where the force is zero. What can you conclude about the stability of the
particle at the points where the force is zero? That is, is it a stable point or an unstable point?

(d) For what range of x is the force repulsive?

(e) For what range of x is the force attractive?



Chapter 10

Collisions: Linear momentum

10.1 Momentum

Using the definition of momentum,

~p = m~v, (10.1)

Newton’s laws can be expressed in the form

~J1 + ~J2 + . . . = ∆~p, (10.2)

where

~Ji =

∫ tf

ti

~Fidt (10.3)

is the impulse due to force ~Fi.

Lecture-Example 10.1: When a ball of mass m1 = 1.00 kg is falling (on Earth of mass m2 = 5.97× 1024 kg)
what are the individual accelerations of the ball and Earth?

Lecture-Example 10.2: A student of mass m = 60.0kg jumps off a table at height h = 1.00m. While hitting
the floor he bends his knees such that the time of contact is 100.0ms. What is the force exerted by the floor
on the student? If the student does not bend his knees the time of contact is 10.0ms. What is the new force
exerted by the floor now? (Answer: 2660N versus 26600N.)

Lecture-Example 10.3: A drop of rain and a pellet of hail, of the same mass m = 1.00 g, hits the roof of a
car with the same speed v = 5.00m/s. Rain drop being liquid stays in contact with the roof for 100.0ms, while
hail being solid rebounds (assume with same speed v = 5.00m/s) and thus stays in contact for a mere 1.00ms.
Calculate the force exerted by each on the roof of the car. (The numbers quoted here are based on reasonable
guesses, and could be off by an order of magnitude.)
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10.2 Conservation of linear momentum

If the net external force on a system is zero the change in momentum is zero, or the momentum is conserved.
In a collision involving two masses we can write

~Fext
1 + ~C12 =

d~p1

dt
, (10.4)

~Fext
2 + ~C21 =

d~p2

dt
, (10.5)

where ~C12 and ~C21 are contact forces, which are action-reaction pairs that are equal and opposite in directions.
If the external forces add up to to zero there is no change in momentum and we have the conservation of linear
momentum

~p1i + ~p2i = ~p1f + ~p2f . (10.6)

10.2.1 Inelastic collisions

Using conservation of linear momentum we have

m1~v1i +m2~v2i = m1~v1f +m2~v2f . (10.7)

The particular case when the masses entangle together before or after the collision is called a completely inelastic
collision.

Lecture-Example 10.4:
A shooter of mass m2 = 90.0 kg shoots a bullet of mass m1 = 3.00 g horizontally, standing on a frictionless
surface at rest. If the muzzle velocity of the bullet is v1f = 600.0m/s, what is the recoil speed of the shooter?
(Answer: v2f = −2.00 cm/s.)

Lecture-Example 10.5:
A shooter of mass m2 = 90.0kg shoots a bullet of mass m1 = 3.00 g in a direction θ = 60.0◦ with respect to
the horizontal, standing on a frictionless surface at rest. If the muzzle velocity of the bullet is v1f = 600.0m/s,
what is the recoil speed of the shooter? (Answer: v2f = −1.00 cm/s.)

Lecture-Example 10.6: (Ballistic pendulum)
A bullet with mass m1 = 3.00 g is fired into a wooden block of mass m2 = 1.00kg, that hangs like a pendulum.
The bullet is embedded in the block (complete inelastic collision). The block (with the bullet embedded in it)
goes h = 30.0 cm high after collision. Calculate the speed of the bullet before it hit the block.

Lecture-Example 10.7: (Collision of automobiles at an intersection.)
A car of mass m1 = 2000.0kg is moving at speed v1i = 20.0m/s towards East. A truck of mass m2 = 5000.0kg
is moving at speed v2i = 10.0m/s towards North. They collide at an intersection and get entangled (complete
inelastic collision). What is the magnitude and direction of the final velocity of the entangled automobiles?

• Repeat the calculation for a semi-truck (ten times heavier) moving at the same speed.
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10.2.2 Elastic collisions in 1-D

In an elastic collision, in addition to momentum being conserved, the kinetic energy is also conserved. This
requires no loss of energy in the form of sound and heat. Conservation of kinetic energy leads to

1

2
m1v

2
1i +

1

2
m2v

2
2i =

1

2
m1v

2
1f +

1

2
m2v

2
2f . (10.8)

In conjunction with the conservation of momentum,

m1v1i +m2v2i = m1v1f +m2v2f , (10.9)

this leads to the corollary

v1i + v1f = v2i + v2f . (10.10)

Together we can solve for the final velocities:

v1f =

(

m1 −m2

m1 +m2

)

v1i +

(

2m2

m1 +m2

)

v2i, (10.11a)

v2f =

(

2m1

m1 +m2

)

v1i +

(

m2 −m1

m1 +m2

)

v2i. (10.11b)

Consider the following cases:

1. m1 = m2: Implies swapping of velocities!

2. v2i = 0:

3. v2i = 0, m1 ≪ m2:

4. v2i = 0, m1 ≫ m2:

Lecture-Example 10.8: A mass m1 = 1.00 kg moving with a speed v1i = +10.0m/s (elastically) collides
with another mass m2 = 1.00kg initially at rest. Describe the motion after collision. (Answer: v1f = 0m/s and
v2f = −v1i = +10.0m/s.)

Lecture-Example 10.9: A massm1 = 1.00 kg moving with a speed v1i = +10.0m/s (elastically) collides with
another mass m2 = 100.0kg initially at rest. Describe the motion after collision. (Answer: v1f = −9.80m/s
and v2f = +0.198m/s.)

Lecture-Example 10.10: A mass m1 = 100kg moving with a speed v1i = +10m/s (elastically) collides with
another mass m2 = 1kg initially at rest. Describe the motion after collision. (Answer: v1f = +9.80m/s and
v2f = +19.8m/s.)

Lecture-Example 10.11: (Rebounce of tennis ball on basketball.)
A tennis ball of mass m1 = 60.0 g is dropped with a basketball of mass m2 = 0.600kg from a height of h = 1m.
How high does the tennis ball return back?
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Lecture-Example 10.12: An electron collides elastically with a stationary hydrogen atom. The mass of the
hydrogen atom is 1837 times that of the electron. Assume that all motion, before and after the collision, occurs
along the same straight line. What is the ratio of the kinetic energy of the hydrogen atom after the collision to
that of the electron before the collision?

Using Eqs. (10.11) for elastic collisions in 1-D, with m2 = 1837m1 and v2i = 0, obtain

v2f
v1i

=
2

1838
. (10.12)

Then, we have the ratio

K2f

K1i

=
m2

m1

(

v2f
v1i

)2

= 1837

(

2

1838

)2

∼ 1

459.8
. (10.13)

10.3 Center of mass

The center of mass of a distribution of mass (in one dimension) is defined as

xcm =

N
∑

i=1

mixi

N
∑

i=1

mi

=

∫

x dm
∫

dm
. (10.14)

In the language of statistics, center of mass is the first moment of mass. The total mass itself is the zeroth
moment of mass. The term weighted average is based on this concept. In three dimensions the center of mass
of a distribution of mass is defined as

~rcm =

N
∑

i=1

mi~ri

N
∑

i=1

mi

=

∫

~r dm
∫

dm
. (10.15)

Lecture-Example 10.13: (Meter stick)
A uniform meter stick has a mass m1 = 10.0 kg placed at 100.0 cm mark and another mass m2 = 20.0 kg
placed at 20.0 cm mark. Determine the center of mass of the stick and the two masses together. (Answer:
xcm = 46.7 cm.)

Lecture-Example 10.14: (Earth-Moon)
Determine the center of mass of the Earth-Moon system. In particular, determine if the center of mass of the
Earth-Moon system is inside or outside the Earth. Given mass of Earth is 81 times the mass of Moon, and the
distance between the center of Earth and center of Moon is 60 times the radius of Earth. Or, given the masses
MEarth = 5.97× 1024 kg, MMoon = 7.35× 1022 kg, the radiuses REarth = 6.37 × 106m, RMoon = 1.74 × 106m,
and the distance between them is r = 384× 106m. (Answer: 4.67× 106m from the center of Earth on the line
passing through the centers of Earth and Moon.)

Lecture-Example 10.15:
Three masses are placed on a plane such that the coordinates of the masses are,m1 = 1.0 kg at (1, 0), m2 = 2.0 kg
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at (2, 0), and m3 = 3.0 kg at (0, 3). Determine the coordinates of the center of the mass of the three masses.
(Answer: (5

6
, 3
2
).)

Lecture-Example 10.16: (Rod of uniform density)
An infinitely thin rod of length L and mass M has a uniform mass per unit length

λ =
M

L
=

dm

dx
. (10.16)

Measuring x from one end of the rod show that

xcm =
L

2
. (10.17)

Lecture-Example 10.17: (Rod with non-uniform mass density)
An infinitely thin rod of length L has a mass per unit length described by

λ =
dm

dx
= ax, (10.18)

where x is measured from one end of the rod. Show that the center of mass of the rod is

xcm =
2

3
L. (10.19)

Further, deduce that

a =
2M

L2
. (10.20)

10.4 Problems

10.4.1 Conceptual questions

1. (5 points.) Given the expression
P = κJ, (10.21)

where P is momentum and J is impulse. What is the dimension of κ?

2. (5 points.) The object in Figure 10.1 is constructed by cutting out a disc of diameter R out of a circular
disc of diameter 2R. Assume uniform density of material (shown in blue). Is the center of mass of the
object above height R from the baseline shown, or below height R?

3. (5 points.) Under what conditions is the linear momentum of a system concerved? Give an example
where linear momentum is not conserved.

4. (5 points.) An object is dropped form rest from the roof of a building. Neglect air resistance. While
falling freely under gravity the object explodes into two identical pieces. Is the linear momentum conserved
in this explosion? Explain.

5. (5 points.) The following video by North Carolina School of Science and Mathematics
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R

Figure 10.1: Problem 2.

https://youtu.be/fdeH6Ksedwk

illustrates the idea of impulse. Similarly, argue why hail (versus water of same size) causes more damage
to a surface.

6. (5 points.) The following video by Physics Demos

https://youtu.be/jRliH0jVilM

illustrates elastic and inelastic collisions. Give an example of (perfect) elastic collision.

7. (5 points.) The following YouTube video by Physics Girl

https://youtu.be/2UHS883_P60

demonstrates momentum transfer when a stack of balls is dropped. Describe the explosion of a supernova
using this idea.

8. (5 points.) The following video by North Carolina School of Science and Mathematics

https://youtu.be/ajTyhbvMEAg

explains how stability depends on center of mass. Give an example of an object whose center of mass is
outside the object.

10.4.2 Problems based on lectures

1. (10 points.) A drop of rain and a pellet of hail, of same masses m = 1.00 g, hits the roof of a car with
same speed v = 5.00m/s. Rain drop being liquid stays in contact with the roof for 100.0ms, while hail
being solid rebounds (assume with same speed v = 5.00m/s) and thus stays in contact for a mere 1.00ms.
Calculate the force exerted by each on the roof of the car.

2. (10 points.) A ball having a mass of 150 g strikes a wall with a speed of 5.0m/s and rebounds with only
50% of its initial kinetic energy.

(a) What is the speed of the ball immediately after rebounding?

(b) If the ball was in contact with the wall for 8.0ms, what was the magnitude of the average force on
the ball from the wall during this time interval?

3. (10 points.) A shooter of mass 90.0kg shoots a bullet of mass 3.00 g in a direction 60.0◦ with respect to
the horizontal, standing on a frictionless surface at rest. If the muzzle velocity of the bullet is 600.0m/s,
what is the recoil speed of the shooter?

https://youtu.be/fdeH6Ksedwk
https://youtu.be/jRliH0jVilM
https://youtu.be/2UHS883_P60
https://youtu.be/ajTyhbvMEAg
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4. (10 points.) A car of mass m1 = 2000.0kg is moving at speed v1i = 35.0m/s towards East. A truck of
mass m2 = 5000.0kg is moving at speed v2i = 25.0m/s towards South. They collide at an intersection
and get entangled (complete inelastic collision). What is the magnitude and direction of the final velocity
of the entangled automobiles?

5. (10 points.) Two masses, m1 = 1.0 kg and m2 = 2.0 kg are hanging off separate strings. Forst mass m1

is pulled to a height h1 = 1.0m and dropped. It swings down and collides with the other hanging mass
(m2 at rest) and they stick to each other (complete inelastic collision). See Figure 10.2. The collision
happens in a plane. How high do the masses rise together after the collision.

h1
h2

Figure 10.2: Problem 5.

6. (10 points.) What is the ratio of the final kinetic energy to initial kinetic energy in a perfectly inelastic
collision involving two particles of masses m and M when the mass M is initially at rest? Express your
answer in terms of m and M .

7. (10 points.) A mass m1 = 100.kg moving with a speed v1i = +10.m/s (elastically) collides with another
mass m2 = 1.0 kg initially at rest. Determine the magnitude and direction of the final velocities of the
masses after collision.

8. (10 points.) A mass m1 = 1.0 kg moving with speed v1i (elastically) collides with another mass m2 =
2.0 kg initially at rest. After the collision mass m2 moves with speed v2f = 3.0m/s. Determine the initial
speed v1i.

9. (10 points.) Consider a thin rod of length L = 1.0m placed on the positive x-axis with one end at the
origin. It has a mass density described by

ρ(x) = a+ b x+ c x2, a = 0 b = 1.0
kg

m2
, c = −0.80

kg

m3
, (10.22)

where x is the distance from end placed at the origin. At what distance from the end placed at the origin
is the center of of mass of the rod?

10. (10 points.) Consider a thin rod of length L placed on the positive x-axis with one end at the origin.
It has a mass density described by ρ(x) = a+ b x + c x2, where x is the distance from end placed at the
origin. a, b, and c are constants with appropriate units and independent of x.

(a) At what distance from the end placed at the origin is the center of of mass of the rod? Express your
answer in terms of a, b, c, and L.

(b) Can this thin rod have it’s center of mass at the center of the rod? If yes, give the relation between
the constants a, b, and c for this particular case. If not, explain why.
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Chapter 11

Rotational motion

11.1 Vector product

Vector product (or the cross product) of two vectors

~A = Ax î+Ay ĵ+Az k̂, (11.1a)

~B = Bx î+By ĵ+Bz k̂, (11.1b)

is given by

~C = ~A× ~B = (AyBz −AzBy) î− (AxBz −AzBx) ĵ+ (AxBy −AyBx) k̂ (11.2a)

= AB sin θ n̂ (11.2b)

where θ is the angle between the two vectors. The vector product measures the area associated with the two
vectors. The direction of the vector product ~C is given by the right-hand rule. The right-hand rule is a
mnemonic that associates the thumb to the vector ~A, the fingers to the vector ~B, such that the vector ~C is in
the direction facing the palm of the right hand.

In discussions concerning three dimensions we often have quantities pointing in and out of a plane. We shall
use the notation

⊙

to represent a direction coming out of the plane, and
⊗

to represent a direction going into
the plane. As a mnemonic one associates the dot with the tip of an arrow coming out of the page and the cross
with the feathers of an arrow going into the page.

11.2 Rotational kinematics

A rigid object will be defined as an object with the constarint that the relative distances of any two points
inside the body does not vary with time. We will confine our attention to rotational motion of rigid bodies
about a fixed axis. Thus, the motion of a particle is confined to a plane perpendicular to the axis.

Since the distance of a point from the axis remains fixed for a rigid body, we can specify the motion of this
point with respect to the axis by specifying the angle it is rotated. The infinitismal angular displacement is
defined as the vector d~θ whose direction specifies the axis of rotation and the magnitude specifies the amount
of rotation about the axis. The change in position of the point due to this rotation is given by

d~r = d~θ ×~r, (11.3)

which for the case of rigid rotation is simply
dr = dθ r. (11.4)

We immediately have the relation
~v = ~ω ×~r, (11.5)
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in terms of the instantaneous angular velocity

~ω =
d~θ

dt
, (11.6)

which for the case of rigid rotation is simply
v = ω r. (11.7)

Differentiating the velocity we obtain
~a = ~α×~r+ ~ω × (~ω ×~r), (11.8)

in terms of the instantaneous angular acceleration

~α =
d~ω

dt
, (11.9)

which for the case of rigid rotation corresponds to the tangential and radial accelerations

aT = α r and ar = −ω2r (11.10)

respectively.

Rotation motion with constant angular acceleration

For the case of rotation motion with constant angular acceleration the angular velocity and the angular accel-
eration are given by

∆θ

∆t
=

ωf + ωi

2
, (11.11a)

α =
ωf − ωi

∆t
. (11.11b)

Eqs. (11.11a) and (11.11b) are two independent equations involving five independent variables: ∆t,∆θ, ωi, ωf , α.
We can further deduce,

∆θ = ωi∆t+
1

2
α∆t2, (11.11c)

∆θ = ωf∆t− 1

2
α∆t2, (11.11d)

ω2
f = ω2

i + 2α∆θ, (11.11e)

obtained by subtracting, adding, and multiplying, Eqs. (11.11a) and (11.11b), respectively.

Lecture-Example 11.1:
Starting from rest a wheel rotates with uniform angular acceleration 3.0 rad/s2. Determine the instantaneous
angular velocity of the wheel after 3.0 s.

Lecture-Example 11.2:
The angular position of a point on the rim of a rotating wheel is given by θ = 4.0 t− 2.0 t2 + t3, where θ is in
radians and t is in seconds.

• Determine the angular velocity at t = 6.0 s.

• Determine the instantaneous angular acceleration at t = 6.0 s.
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11.3 Torque

The ability of a force to contribute to rotational motion, about an axis, is measured by torque

~τ = ~r× ~F. (11.12)

Lecture-Example 11.3:
A force of 10.0N is exerted on a door in a direction perpendicular to the plane of the door at a distance of
40.0 cm from the hinge. Determine the torque exerted by the force. (Answer: 4.00Nm.)

11.4 Moment of inertia

For a particle rotating ‘rigidly’ about an axis, the tendency to be in the state of rotational rest or constant
angular velocity, the rotational inertia, is given the moment of inertia

I = mr2, (11.13)

where r is the perpendicular distance of the mass m to the axis. The moment of inertia of a distribution of
mass is given by

I =

N
∑

i=1

mir
2
i =

∫

r2 dm. (11.14)

In the language of statistics, moment of inertia is the second moment of mass.

Lecture-Example 11.4: (Rotational inertia)
A massless rod is hinged so that it can rotate about one of its ends. Masses m1 = 1.0 kg and m2 = 20.0 kg
are attached to the rod at r1 = 1.0m and r2 = 5.0 cm respectively. Determine the moment of inertia of the
configuration. (Answer: 1.1 kg·m2.)

• Repeat the calculation for r2 = 0.5m. (Answer: 6.0 kg·m2.)

Lecture-Example 11.5: (Uniform rod)
Determine the moment of inertia of an infinitely thin rod of massM and length L, when the axis is perpendicular
to the rod and passing through the center of the rod. (Answer: I = ML2/12.) Repeat for the case when the
axis is perpendicular to the rod and passing through on of the ends of the rod. (Answer: I = ML2/3.)

Lecture-Example 11.6: (Comparing moment of inertia)
Show that

Isolid sphere
about diameter

< Isolid cylinder
about axis

< Ispherical shell
about diameter

< Icylindrical shell
about axis

. (11.15)
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11.5 Rotational dynamics

For the case when the moment of of inertia I of a body does not change in time, the rotational dynamics is
described by the equation

~τ1 + ~τ2 + . . . = I ~α. (11.16)

Lecture-Example 11.7:
A uniform solid cylinder of radius R and mass M is free to rotate about its symmetry axis. The cylinder acts
like a pulley. A string wound around the cylinder is connected to a mass m, which falls under gravity. See
Fig. 11.1. What is the angular acceleration α of the cylinder?

m

Figure 11.1: Lecture-Example 11.7

• Using Newton’s law, for the mass m, show that

mg − T = ma, (11.17)

where T is the tension in the string. Using the Newton’s law for torque, for the mass M , deduce the
relation

T =
1

2
MRα. (11.18)

Presuming the string does not stretch and rolls the cylinder perfectly we also have the constraint

a = αR. (11.19)

• Determine the acceleration a of the mass m to be

a =
m

(

m+ M
2

)g. (11.20)

Determine the angular acceleration α of the cylinder, and the tension T in the string.

11.6 Rotational work-energy theorem

The rotational work-energy theorem states

W1 +W2 + . . . = Krot, (11.21)

where the work done by the torque ~τi is given by

Wi =

∫ f

i

~τi · d~θ (11.22)
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and the rotational kinetic energy is given by

Krot =
1

2
Iω2. (11.23)

Lecture-Example 11.8:
A solid sphere and a spherical shell, both of same mass M and same radius R, start from rest at a height h on
an incline.

h

Figure 11.2: Lecture-Example 11.8

• Using the translational work-energy theorem show that

mgh− Ffd =
1

2
Mv2, (11.24)

where Ff is the force of friction and d is the distance along the incline. Using rotational work-energy
theorem show that

FfRθ =
1

2
Iω2, (11.25)

where θ is the angular displacement corresponding to the distance d. For rolling without slipping or sliding
argue that

d = Rθ and v = ωR. (11.26)

Verify that, for rolling motion, there is no work done by the force of friction. That is, for rolling motion,
the translational work done by the force of friction exactly cancels the rotational work done by the force
of friction. Thus, deduce the relation

mgh =
1

2
Mv2 +

1

2
Iω2. (11.27)

Determine the velocity of the solid sphere and the spherical shell to be

v =

√

2gh

1 + p
, (11.28)

where we defined I = pMR2.

• Using translational Newton’s law show that

mg sin θ − Ff = ma, (11.29)

and using rotational Newton’s law show that

FfR = Iα. (11.30)

Thus, deduce the relation

a =
g sin θ

1 + p
. (11.31)
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• Model a raw egg as a spherical shell and a boiled egg as a solid sphere, and deduce which of them will roll
down the incline faster.

11.7 Direction of friction on wheels

Consider an illustrative example consisting of a simple two-wheeler. It consists of two wheels connected by a
rod. The front wheel is driven by a torque provided by an engine, and the rear wheel is pulled forward by
the rod. Thus, the front wheel is driven by a torque, and the rear wheel is driven by a force. Let us assume
perfect rolling, with no slipping or sliding. Let the front wheel have radius R1, mass m1, and moment of inertia
I1 = p1m1R

2
1, and let the rear wheel have radius R2, mass m2, and moment of inertia I2 = p2m2R

2
2,

Accelerating forward while moving forward

Friction acts in the forward direction on the front wheel, and in the backward direction on the rear wheel. Note
that Fpull is the same on both the tires because of Newton’s third law.

F1f

FpullFpull

F2f

τe

Figure 11.3: A simple two-wheeler accelerating forward.

τe −R1F1f = I1α1 (Torque equation for front wheel), (11.32a)

F1f − Fpull = m1a1 (Force equation for front wheel), (11.32b)

R2F2f = I2α2 (Torque equation for rear wheel), (11.32c)

Fpull − F2f = m2a2 (Force equation for rear wheel). (11.32d)

For rolling motion, we have the constraints,

a1 = α1R1 and a1 = α1R1, (11.33)

and the rigidity of the two-wheel configuration further requires the constraint

a1 = a2 = a. (11.34)

Thus, we can derive the acceleration of the two-wheeler using

a =
τe

R1

[

(1 + p1)m1 + (1 + p2)m2

] . (11.35)

In terms of the acceleration of the system we can determine all other forces. For the particular caseR1 = R2 = R,
m1 = m2 = m, and p1 = p2 = 1/2,

ma = 2F2f =
2

3
Fpull =

2

5
F1f =

1

3

τe
R
. (11.36)
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Constant speed

What happens if the engine was switched off? Using Eq. (11.36) we learn that this requires the acceleration
a to be zero, which immediately implies that all the forces are zero in this case. This is unphysical, and is a
consequence of the extreme constraint imposed by perfect rolling.

To understand this, consider a single wheel rolling forward under the influence of friction alone. If the
friction is assumed to be acting in the forward direction it will lead to translational acceleration, with angular
decceleration of the wheel, which is possible simultaneaously only when imperfect rolling is allowed, or when
frictional force is zero.

Accelerating backward (deccelerating) while moving forward

Next, let a torque τb be applied, using brakes, on the front wheel. Friction acts in the backward direction on
the front wheel, and in the forward direction on the rear wheel.

F1f

FpullFpull

F2f

τb

Figure 11.4: A simple two-wheeler deccelerating.

−τb +R1F1f = −I1α1 (Torque equation for front wheel), (11.37a)

−F1f + Fpull = −m1a1 (Force equation for front wheel), (11.37b)

−R2F2f = −I2α2 (Torque equation for rear wheel), (11.37c)

−Fpull + F2f = −m2a2 (Force equation for rear wheel). (11.37d)

Thus, we can derive the acceleration of the two-wheeler using

a =
τb

R1

[

(1 + p1)m1 + (1 + p2)m2

] . (11.38)

This leads to the same magnitudes for the forces as in the case of forward acceleration.

Lecture-Example 11.9: (Comments)
The key observation is that the friction on the front wheel opposes the torque and the friction on the rear wheel
opposes the force. In more complicated systems a wheel is acted on by torques and forces simultaneously, and
in such situations the friction opposes either the torque or the force at a given moment in time.

• Which tires (front or rear) wears more due to friction?

• For perfect rolling verify that the total work done by the force of friction is zero.

• Derive the above expressions for the case when the system is accelerating backward by applying brakes in
the rear wheel alone.
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11.8 Problems

11.8.1 Conceptual questions

1. (5 points.) (Axis of rotation) The following video by Khan Academy

https://youtu.be/h5BmWo5_sc8

shows that an arbitrary rotation can be described using a single vector. The direction of the vector
represents the axis of rotation, and magnitude of the vector is equal to the amount of rotation about the
axis. Are rotations commutative? That is, if you make two independent rotations about, say, perpendicular
axes, does the order of rotations matter?

2. (5 points.) (Angular kinematics) A point particle is following a circular path. Using a diagram illus-
trate the directions of the following vectors: angular displacement, angular velocity, angular acceleration,
tangential acceleration, centripetal acceleration, Coriolis acceleration.

3. (5 points.) (Torque) The following video by Visual Physics

https://youtu.be/WSfQwt2nmkg

describes the definition of torque. Determine the torque due to the normal force while a sphere is rolling
on a surface.

4. (5 points.) (Rotational inertia) The following video by North Carolina School of Science and Mathematics

https://youtu.be/lk_Pwu7nf1U

describes the role of rotational inertia in balancing acts. In the balancing act of the video which line
represents the axis of rotation?

5. (5 points.) (Intermediate axis theorem) The following video by Plasma Ben

https://youtu.be/BPMjcN-sBJ4

illustrates the intermediate axis theorem. Also, check out the following video by Plasma Ben

https://youtu.be/1n-HMSCDYtM

showing a similar effect. Order the three principal moment of inertia of one of your textbook.

6. (5 points.) The following video by Mazda Australia

https://youtu.be/ru4JIZ-x8yo

explains the working of anti-lock braking system (ABS). Describe how the ABS could be controlled using
the idea of slip ratio, (v − ωR)/v, where v is the translational velocity, ω is the angular velocity, and R is
the radius of the wheel.

7. (5 points.) (Rotational dynamics of a yoyo)
(Rotational dynamics of a billiard ball)

8. (5 points.) (Rotational work.) Inertia associated with translational motion is governed by mass. The
rotational inertia is governed by both mass and the radial distribution of the mass about the axis of
rotation. The following video by North Carolina School of Science and Mathematics illustrates how the
rotational inertia affects rolling motion on an incline,

https://youtu.be/h5BmWo5_sc8
https://youtu.be/WSfQwt2nmkg
https://youtu.be/lk_Pwu7nf1U
https://youtu.be/BPMjcN-sBJ4
https://youtu.be/1n-HMSCDYtM
https://youtu.be/ru4JIZ-x8yo
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https://youtu.be/CHQOctEvtTY.

If you roll a raw egg and a hard-boiled egg (of the same mass) down an incline, which of them will reach
the bottom of incline first?

9. (5 points.) (Angular momentum) The following video by TED-Ed

https://youtu.be/l5VgOdgptRg

describes how conservation of angular momentum is used in ballet. While spinning on your toes how does
your angular velocity change when you pull your arms inward?

10. (5 points.) (Precession of angular momentum)

11. (5 points.) (Inertial navigation system)

12. (5 points.) What is the dimension of torque? How is it different from the dimension of energy?

11.8.2 Problems based on lectures

1. (10 points.) A wheel rotating about a fixed axis through its center has a constant angular acceleration
of 4.0 rad/s2. In a certain 4.0 s interval the wheel turns through an angle of 80 rad.

(a) What is the angular velocity of the wheel at the start of the 4.0 s interval?

(b) What is the angular velocity of the wheel at the end of the 4.0 s interval?

2. (10 points.) A turntable is rotating with a constant angular speed of 6.5 rad/s. You place a penny on
the turntable.

(a) List the forces acting on the penny.

(b) Which force contributes to the centripetal acceleration of the penny?

(c) What is the farthest distance away from the axis of rotation of the turntable that you can place a
penny such that the penny does not slide away? The coefficient of static friction between the penny
and the turntable is 0.5.

3. (10 points.) A fan blade is rotating with a uniform angular acceleration of 10.0 rad/s2. At what point
on the blade, as measured from the axis of rotation, does the magnitude of the tangential acceleration
equal that of the acceleration due to gravity?

4. (10 points.) A motorcycle accelerates uniformly from rest and reaches a linear speed of 24.0m/s in a
time of 8.00 s. The radius of each tire is 0.300m. What is the magnitude of the angular acceleration of
each tire?

5. (10 points.) Two children hang by their hands from the same tree branch. The branch is straight,
and grows out from the tree trunk at an angle of 30.0◦ above the horizontal. One child, with a mass of
45.0 kg, is hanging 1.50m along the branch from the tree trunk. The other child, with a mass of 35.0 kg, is
hanging 2.00m from the tree trunk. What is the magnitude of the total torque exerted on the branch by
the children? Assume that the axis is located where the branch joins the tree trunk and is perpendicular
to the plane formed by the branch and the trunk.

6. (10 points.) The center of mass of an elongated block of mass M , with non-uniform mass distribution
inside it, may be determined by an arrangement shown in Figure 11.5 below. The block is placed on a
plank of mass m = 0 that rests on two scales separated by a distance equal to the length L = 2.00m of
the block. The scales that measure the normal forces read N2 = 450.0N and N1 = 350.0N. Determine
the distance x of the center of mass of the block from one end.

https://youtu.be/CHQOctEvtTY
https://youtu.be/l5VgOdgptRg
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Plank

Block

N1 N2

mg

b

Mg

x

Figure 11.5: Problem 6.

7. (10 points.) Workers have loaded a delivery truck in such a way that its center of mass is only slightly
forward of the rear axle. The mass of the truck and its contents is 7500kg. Find the magnitude of the
normal force exerted by the ground on the front wheels of the truck.

8. (10 points.) Five balls of masses m1 = 1.0kg, m2 = 2.0 kg, m3 = 3.0 kg, m4 = 4.0 kg, and m0 = 5.0 kg,
are connected by massless rods of length a = 10.0 cm and b = 15.0 cm, as shown in Figure 11.6. This
configuration is rotated about an axis coming out of the plane containing the five masses and passing
through the mass m3. The inertia associated with this rotational motion is quantified by the moment of
inertia. Compute the moment of inertia.

m0

m1

m3

m4 m2

b

b

aa

Figure 11.6: Problem 8.

9. (10 points.) The Atwood machine in Figure 11.7 consists of two masses m1 = 10.0 kg and m2 = 20.0 kg
connected by a massless (inextensible) string passing over a pulley of mass M = 5.0 kg in the shape of a
uniform disc of radius R such that it has moment of inertia I = MR2/2. Determine the magnitude of the
resultant acceleration of mass m1. (Recall that in an earlier analysis we had assumed massless pulley.)

10. (10 points.) A solid sphere, (with I = 2
5
MR2 when the axis of rotation passes through the center of

sphere,) rolls perfectly (without sliding or slipping) on a horizontal surface. What fraction of the total
kinetic energy of the sphere is in the form of rotational kinetic energy.

11. (10 points.) A solid cylinder, (with I = 1
2
MR2 when the axis of rotation is along the axis of cylinder,)

rolls perfectly (without sliding or slipping) on an inclined plane. If the cylinder started from rest at the
top, vertical height of 1.20m, what is the velocity of the cylinder when it reaches the bottom of the incline?
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Figure 11.7: Atwood machine.

12. (10 points.) An object in the shape of a spherical shell, (with I = 2
3
MR2 when the axis of rotation passes

through the center of sphere,) rolls perfectly (without sliding or slipping) on the surface shown in Figure
11.8. It starts from rest at point A where the vertical height is hA = 40.0m. Determine the velocity of
the object at point E, where the vertical height is hE = 20.0m.

O

A

B

C

D

E

F

G

Figure 11.8: Problem 12.

13. (10 points.) A solid sphere of radius a = 0.20m, (with moment of inertia I = 2
5
MR2 when the axis of

rotation passes through the center of sphere,) rolls perfectly (without sliding and slipping) on a surface
in the shape of a circle of radius R = 2.0m shown in Figure 11.9. For what minimum velocity vi at the
bottom of the circle will the sphere be able to go all around?

14. (10 points.) A rod of length L = 1.0m, (with I = 1
3
ML2 when the axis of rotation is perpendicular to

the rod and passing through one end of the rod,) is free to rotate in a vertical plane. The axis of rotation
is frictionless. For what minimum velocity vi of the tip of the rod in Figure 11.10 will the rod be able to
go all around.

15. (10 points.) A circular platform in the shape of a disc of radius R = 2.0m and mass M = 75kg is free
to rotate about an axis passing through the center of the disc, with the axis perpendicular to the disc,
(I = 1

2
MR2.) A boy weighing 50.0kg moves inward from the outer edge of the disc to the center of the

disc. What is the anglular speed of the disc when the boy reaches the center, if the angular speed was
5.0 rad/s when the boy was at the outer edge.

16. (10 points.) An ice skater is spinning with both arms and a leg outstretched. Then, she pulls her arms
and leg inward. As a result of this maneuver, her angular velocity ω increases by a factor of 2.0. What is
the corresponding change in the moment of inertia.
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R

a
vi

g

Figure 11.9: Problem 13.

b

vi

L

g

Figure 11.10: Problem 14.

17. (10 points.) [Gravitational slingshot] Earth’s orbit around the Sun is an ellipse. At the aphelion the
distance between Earth and Sun is 152.10×106 km and Earth’s speed is 29.29 km/s. What will be Earth’s
speed at the perihelion when the distance between Earth and Sun is only 147.10× 106 km. Hint: Angular
momentum of Earth-Sun system is conserved. In orbital mechanics of spaceships this maneuver is used
for gaining speed and is known as gravitational slingshot.

11.9 Homework problems

Homework-Problem 11.1:
A potter’s wheel moves uniformly from rest to an angular speed of 0.19 rev/s in 34 s.

1. Find its angular acceleration in radians per second per second.

2. Would doubling the angular acceleration during the given period have doubled final angular speed?

Hints:

1. Following is given: initial angular speed ωi = 0, final angular speed ωf = 0.19 rev/s, time elapsed ∆t = 34 s.
Convert rev/s to rad/s using the conversion 1 revolution = 1 radian. Use the appropriate equation from
Eqs. (11.11) to find the angular acceleration α. (Answer: α = 0.035 rad/s2.)
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2. For the case when the initial angular speed is zero, we have ωf = α∆t. Using this equation analyse what
happens to to the final angular speed ωf when the angular acceleration α is doubled.

Homework-Problem 11.2:
A wheel starts from rest and rotates with constant angular acceleration to reach an angular speed of 11.2 rad/s
in 2.90 s.

1. Find the magnitude of the angular acceleration of the wheel.

2. Find the angle in radians through which it rotates in this time interval.

Hints:

1. Following is given: initial angular speed ωi = 0, final angular speed ωf = 11.2 rad/s, time elapsed
∆t = 2.90 s. Use the appropriate equation from Eqs. (11.11) to find the angular acceleration α. (Answer:
α = 3.86 rad/s2.)

2. Following is given: initial angular speed ωi = 0, final angular speed ωf = 11.2 rad/s, time elapsed
∆t = 2.90 s. Use the appropriate equation from Eqs. (11.11) to find the angular displacement ∆θ. (Answer:
∆θ = 16.2 rad.)

Homework-Problem 11.3:
An electric motor rotating a workshop grinding wheel at 1.02× 102 rev/min is switched off. Assume the wheel
has a constant negative angular acceleration of magnitude 1.92 rad/s2.

1. How long does it take the grinding wheel to stop?

2. Through how many radians has the wheel turned during the time interval found in earlier part?

Hints:

1. Following is given: initial angular speed ωi = 1.02 × 102 rev/min, final angular speed ωf = 0, angular
acceleration α = −1.92 rad/s2. Convert rev/min to rad/s, use the conversion 1 revolution = 1 radian. Use
the appropriate equation from Eqs. (11.11) to find the alapsed time ∆t. (Answer: ∆t = 5.56 s.)

2. Following is given: initial angular speed ωi = 1.02 × 102 rev/min, final angular speed ωf = 0, angular
acceleration α = −1.92 rad/s2. You also know the elapsed time ∆t from the earlier part. Use any equation
from Eqs. (11.11) containing the angular displacement ∆θ to find the angular displacement. (Answer:
∆θ = 29.7 rad.)
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Chapter 12

Gravitation

12.1 Problems

12.1.1 Conceptual questions

1. (5 points.) [Lagrange point] The following video by Spacedock

https://youtu.be/Gu4vA2ztgGM

illustrates the concept of Lagrange points. The James Webb Space Telescope (JWST), scheduled to be
launched in 2021, will be the formal successor to the Hubble Space Telescope (HST). Unlike HST, JWST
will not orbit Earth. Instead it will be stationed at the L2 Lagrange point of the Earth-Sun system. Why
is the L2 Lagrange point a convenient location for space telescopes?

2. (5 points.) The following video by minutephysics

https://youtu.be/urQCmMiHKQk

evaluates how long it would take to fall through a tunnel passing through Earth. What is the gravitational
potential at the center of Earth?

3. (5 points.) [Escape velocity] The following video by UNSW Physics

https://youtu.be/aN91GyEcB3E

explains escape velocity. Compare the orbital velocity of the International Space Station with the escape
velocity of Earth.

4. (5 points.) Escape velocity is the minimum speed needed for an object at the surface of a planet to
escape from the gravitational influence of the planet. Is it necessary for the this velocity to be directed
radially outward? That is, would it escape if the object were launched at an arbitrary angle?

12.1.2 Problems based on lectures

1. (10 points.) Two identical stars, each of mass m, are positioned at diagonally opposite corners of a
square of edge length L. See Figure 12.1. Find the magnitude and direction of the gravitational field at
one of the vacant corner of the square marked O.

2. (10 points.) Three identical stars, each of mass m, are positioned at the corners of a square of edge
length L.
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m

m

L

L

O

Figure 12.1: Problem 12.1

(a) Find the magnitude and direction of the gravitational field at the vacant corner of the square due to
the three stars.

(b) Find the magnitude and direction of the gravitational force a planet of mass M would experience if
it is placed in the vacant corner.

(c) Find the magnitude and direction of the gravitational field at the center of the square.

3. (10 points.) Determine the expression for the gravitational field at point O in Figure 12.2, along the
bisector of the line segment connecting two identical stars, masses m1 = m2 = m, that are separated by
distance 2a.

m ma a

y

O

Figure 12.2: Problem 12.3

4. (10 points.) Four identical stars, each of mass m, are positioned at the corners of a square of edge length
L.

(a) Find the gravitational potential at a distance very far away from the square, that is, at infinity.

(b) Find the gravitational potential at the center of the square.

(c) Find the gravitational potential at the center of one of the edges of the square.

(d) How much work is done by the gravitational forces when a mass M is moved from infinity to the
center of the square?

5. (10 points.) Three identical stars, of mass m each, are positioned at the corners of an equilateral triangle
of edge length a. Find the expression for the gravitational potential energy of this three-body configuration
up to a constant.
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6. (10 points.) Four identical stars, of mass m each, are positioned at the corners of a square of edge length
a. Show that the expression for the gravitational potential energy of this four-body configuration can be
expressed in the form

U = α
Gm2

a
, (12.1)

where α is a number. Find α.

7. (10 points.) At the surface of Earth a rocket is launched in the radially outward direction with a speed
equal to the orbital speed of the International Space Station (∼ 7.7 km/s). Neglecting the gravitational
influence of the Sun and other planets, and air resitance, determine how far the rocket would go. Compare
this distance to the Earth-Moon distance. Next, derive the escape velocity of Earth.
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Electricity and Magnetism
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Chapter 23

Electric force and electric field

23.1 Electric charge

Like mass is a fundamental property of an object, electric charge is another fundamental property of an object
or a particle. Unlike mass, which is always non-negative, charge can be positive or negative. Charge is measured
in units of Coulomb.

1. Electric charge is always conserved.

2. Electric charge is quantized. That is, it always comes in integer multiples of a fundamental charge

e ∼ 1.60× 10−19C. (23.1)

It is instructive to compare the electric charge and mass of the three particles that constitutes all atoms.

3. All macroscopic objects get their charge from the electrons and protons that constitute them. Charges
are not always free to move inside an object. We will often consider two extremes: A perfect conductor
in which the charges are completely free to move, and a perfect insulator in which the charges are static.
Metals (like gold and copper) are pretty much perfect conductors, and wood and rubber are close to
perfect insulators. Vacuum is the perfect insulator.

To get an an insight regarding the amount of charge contained in a Coulomb of charge we list a few typical
charges we encounter in Table 23.1.

Lecture-Example 23.1:
Determine the number of electrons in one gram of electron. Then calculate the total charge of one gram of
electron.

• One gram of electron has about 1027 electrons, and a total charge of about 108 C, an enormous amount
of charge.

Particle Charge Mass
Electron −e ∼ 9.109× 10−31 kg
Proton +e ∼ 1.672× 10−27 kg
Neutron 0 ∼ 1.674× 10−27 kg

Table 23.1: Charge and masses of particles that constitutes all atoms.
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10−19C charge on an electron
10−15C charge on a typical dust particle
10−6C this much isolated charge when confined to a region of 10 cm (a

typical hand) causes breakdown of air (static electricity).
101C this much isolated charge when confined to a region of 1000m (a

typical thundercloud) causes breakdown of air (lightning).
103C total charge generated in an alkaline battery. This is not isolated,

so does not breakdown air.
106C this much isolated charge when confined to a region of 1m has

been predicted to breakdown vacuum.

Table 23.2: Orders of magnitude (charge)

23.2 Coulomb’s law

The electrostatic force between two objects with charges q1 and q2, separated by distance r, is

~F = ke
q1q2
r2

r̂, (23.2)

where r̂ encodes the direction content of the force. Like charges repel and unlike charges attract. The constant
of proportionality is ke ∼ 8.99× 109Nm2/C2, which is often expressed in terms of the permittivity of vacuum,

ε0 ∼ 8.85× 10−12 C2

Nm2
, using ke =

1

4πε0
. (23.3)

Lecture-Example 23.2: (Static electricity)
Consider a neutral balloon of mass m = 10.0 g blown up so that it is (aproximately) a sphere of radius R =
10.0 cm. I can rub it on my shirt so that a certain amount of charge Q is transferred from the balloon to my
hand, such that the balloon and my hand acquire unlike charges. We will presume that the charge on the
balloon is uniformly distributed on its surface. If the attractive force on the balloon from my hand can barely
balance gravity, determine the charge Q. Due to the approximations involved our estimate is expected to be
valid to one significant digit only.

• The gravitation force on the balloon is nulled by the electrostatic force,

mg =
kQ2

R2
. (23.4)

This leads to Q = 3× 10−7C.

Lecture-Example 23.3: A hydrogen atom consists of an electron orbiting a proton. The radius is about
5.3× 10−11m.

• Find the electrostatic force between an electron and a proton.

Felectric =
ke2

R2
∼ 10−8N. (23.5)

• Find the gravitational force between an electron and a proton.

Fgravity =
Gmemp

R2
∼ 10−47N. (23.6)
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• Find the ratio of the electrostatic force to gravitational force. (This is independent of the radius.)

Felectric

Fgravity

=
ke2

Gmemp

∼ 1040. (23.7)

Lecture-Example 23.4: Can we detach the Moon?
If charges of same sign are placed on Earth and Moon it could be possible to negate the gravitational force
between them. (mEarth ∼ 6×1024 kg, mMoon ∼ 7×1022 kg.) (You do not need the knowledge of the Earth-Moon
distance for this calculation, R ∼ 4× 108m.)

• Equating the gravitational force to the electrostatic force we have

GmEmmoon

R2
=

kq2

R2
. (23.8)

• Thus, the charge needed to release the Moon is q = 1012C, which is about 1 kg of electrons. This is a
stupendous amount of charge, which when confined to the volume of Earth will breakdown the atmosphere,
though not breakdown vacuum!

Lecture-Example 23.5: Charges q1 = +3.0µC and q2 = −1.0µC are placed a distance x = 10.0 cm apart.
Presume the two charges to be uniformly spread on identical perfectly conducting spheres of radius R = 1.0 cm
with masses m1 = 100.0 g and m2 = 10m1.

q1 q2

x

Figure 23.1: Lecture-Example 23.5

• Find the forces ~F12 and ~F21 on the charges. Determine the instantaneous accelerations ~a1 and ~a2 of
spheres when they are x distance apart. Note that the instantaneous accelerations are not uniform, they
are distance dependent and get larger as they get closer. (Answer: a1 = 27m/s2, a2 = 2.7m/s2.)

• If let go, the two spheres attract, move towards each other, and come in contact. Once in contact,
because the charges are on perfectly conducting spheres, the charges will redistribute on the two spheres.
Determine the new charges q′1 and q′2 on the two spheres to be

q′1 = q′2 =
q1 + q2

2
. (23.9)

(Answer: q′1 = q′2 = 1.0µC.)

• Find the repulsive force on the two spheres after they come into contact. Determine the instantaneous
accelerations ~a′1 and ~a′2 of the two spheres when they are in contact, their centers a distance 2R apart.
Observe that the smaller mass does most of the movement, relatively. Again, observe that the instanta-
neous accelerations are not uniform, they are distance dependent and get weaker as they get farther apart.
(Answer: a1 = 225m/s2, a2 = 22.5m/s2.)
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Lecture-Example 23.6: Two positive charges and two negative charges of equal magnitude are placed at
the corners of a square of length L, such that like charges are at diagonally opposite corners.

• The magnitude of the force on one of the positive charge is

|~Ftot| =
(√

2− 1

2

)

F0, F0 =
kq2

L2
. (23.10)

• Analyze the direction of the force on one of the positive charge.

• If the four charges were free to move, will they collectively move away from each other or move towards
each other?

Lecture-Example 23.7: Three identical charges of equal magnitude q are placed at the corners of an
equilateral triangle of length L. Determine the magnitude of the Coulomb force on one of the charges.

Lecture-Example 23.8: Where is the total force zero?
See Figure 23.2. Two positive charges q1 and q2 are fixed to a line. As a multiple of distance D, at what
coordinate on the line is the net electrostatic force on a negative charge q3 zero?

q1 q3 q2

D

x

Figure 23.2: Lecture-Example 23.8

• Equate the forces to deduce

x =
D

(

1 +
√

q2
q1

) . (23.11)

For q2 > q1 we have 0 < x < L/2. And, for q2 < q1 we have 0 < L/2 < x < L. In general the equilibrium
point is closer to the smaller charge. Investigate if the particle 3 is stable or unstable at this point?

• Repeat the above for a positive charge q3.

• Repeat the above for unlike q1 and q2.

Lecture-Example 23.9: In Figure 23.3, particles 1 and 2 of charge q1 = q2 are placed on a y axis at distance
a from the origin. Particle 3 of charge q3 is moved gradually along the x axis.

• Show that the electrostatic force on charge q3 is given by

~Ftot = î kq1q3
2x

(x2 + a2)
3
2

. (23.12)
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q1

q2

q3x

a

a

x

|~Ftot|

a

4

3
√
3

kq1q3
a2

Figure 23.3: Lecture-Example 23.9

• Determine values of x at which the force is a minimum or a maximum? (Ans: x = ± a√
2
.)

• What are the minimum and maximum magnitudes of the force?

• You could use q1 = q2 = q3 = 1.0µC and a = 10.0 cm.

Lecture-Example 23.10: (Electroscope)
In Figure 23.4, two tiny conducting balls of identical mass m = 100.0g and identical charge q = 1.0µC hang
from non-conducting threads of length L = 1.0m. The threads make a small angle θ with respect to the vertical.

θθ

LL

2x

~T
θ

~Fe

m~g

Figure 23.4: Lecture-Example 23.10.

• Show that half of the equilibrium separation, x, between the balls satisfies

x3

√
L2 − x2

=
kq2

4mg
. (23.13)

This involves solving a cubic equation of the form y3 = a3
√

1− y2, which has a closed form solution. Here
y = x/L and a3 = kq2/4L2mg. The series expansion of the solution is

y =



























a− a3

6
− a5

72
+

5a7

1296
+

a9

384
+ . . . , for a ≪ 1,

1− 1

2a6
+

11

8a12
− 85

16a18
+ . . . , for a ≫ 1,

(23.14)
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where a < 1 corresponds to the case when the electrostatic force is larger than the gravitational force and
a > 1 corresponds to the opposite case. Using these limiting forms qualitatively plot y as a function of a.

• If we discharge one of the spheres, it becomes charge neutral, thus switches off the electrostatic force
between the spheres. The spheres will collapse, come in contact, redistribute the charge between them,
and again separate due to repulsion. Find the new separation distance.

• This setup can be used to measure q as a function of the angular separation θ, after using x = L sin θ.
Thus, it serves the purpose of a rudimentary electroscope.

Lecture-Example 23.11: Two conducting balls of identical massm = 100.0 g and identical charge q = 1.0µC
are fixed to the ends of a non-conducting spring of length L = 1.0m (when unstretched) and spring constant
ks. The electrostatic force causes the spring to stretch by a distance x. Show that x satisfies the equation

ksx =
kq2

(L+ x)2
. (23.15)

23.3 Electric field

Coulomb’s law states that an object with non-zero charge exerts a force on another charge with a non-zero
charge. In particular, the Coulomb force does not require the two charges to come in contact. How does one
charge know to respond to (say the movement of) another charge? That is, how do they communicate? This was
not addressed in Coulomb’s time and this form of interaction between charges is dubbed action-at-a-distance.
Since the time of Faraday, in 1830’s, the understanding is that the individual charges are ‘immersed’ in a
‘medium’ termed the electric field. The electric field permeates all space and supplies it with an energy and
momentum per unit volume. The electric field associates a vector quantity at every point in space at each time.
The presence of an individual charge disturbs the electric field continuum, and another charge responds to this
disturbance. Further, our understanding is that these disturbances travel at the speed of light as electromagnetic
waves. Our current understanding of gravitational interaction is similar, with the curvature tensor taking the
role of electric field.

In terms of the electric field the Coulomb force is effectively the same, but for the fact that it is interpreted
as a two stage phenomena: the charge q1 creates an electric field

~E1 =
kq1
r2

r̂ (23.16)

everywhere in space, which exerts a force
~F21 = q2~E1 (23.17)

on another charge q2, where ~E1 is the electric field at the position of charge ‘2’, and ~F21 is read as the force on
‘2’ due to ‘1’. Conversely, the electric field at a point in space is the force a unit charge would experience if it
is placed at the point.

Electric field lines

The electric field associates a vector to every point in space. This information is often represented as electric
field lines originating from positive charges and terminating on negative charges. Thus, positive charges are
sources of electric field and negative charges are sinks for electric field.
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θ

~E

Figure 23.5: Problem 3.

Lecture-Example 23.12: A positively charged sphere, q = +10.0µC and m = 1.00 g, is suspended using a
20.0 cm long string in a uniform electric field E = 1.0 × 103N/C as shown in the figure below. Determine the
angle θ the string makes with the vertical when the ball is in equilibrium. (Use g = 10.0m/s2.)

Lecture-Example 23.13:
Determine the electric field along the bisector of the line segment connecting two positive charges, q1 = q2 = q
and distance 2a.

q q

~E1
~E2

Figure 23.6: Lecture-Example 23.13

• The total electric field at a distance y along the bisector is

~Etot = ~E1 + ~E2 = ĵ
2kqy

(y2 + a2)
3
2

. (23.18)

See Figure 23.6.

• What is the electric force on charge q3 at this point.

• Determine the case for y ≫ a and y ≪ a.

Lecture-Example 23.14: (Electric dipole moment)
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Two equal and opposite point charges, separated by a distance d, have an electric dipole moment given by

~p = q~d, (23.19)

where ~d points from the negative to the positive charge. Determine the electric field along the bisector of an
electric dipole.

+q −q

~E1

~E2

~p

Figure 23.7: Lecture-Example 23.14

• The total electric field at a distance y along the bisector for d = 2a is

~Etot = ~E1 + ~E2 = − k~p

(y2 + a2)
3
2

. (23.20)

See Figure 23.10.

• Unless the atoms are ionized, their interaction with other atoms gets significant contributions from the
electric dipole moment. Note that, the electric field due to dipoles has a inverse cube dependence in
distance, and thus the corresponding force is much weaker than the Coulomb force.

• The electric field along the line joining the charges is significantly weaker. Thus atoms interacting this
way would tend to align in a particular way.

• What is the electric force on charge q3 at this point.

• Determine the case for y ≫ a and y ≪ a. Observe that for y ≫ a it is very weak, but non-zero.

Lecture-Example 23.15: Where is the electric field zero?
See Figure 23.9. Two positive charges q1 and q2 are fixed to a line. As a multiple of distance D, at what
coordinate on the line is the electric field zero?

• Argue that the electric field goes to zero in the region between the charges. Equate the magnitude of the
individual electric fields to deduce

x =
D

(

1 +
√

q2
q1

) . (23.21)

For q2 > q1 we have 0 < x < L/2. And, for q2 < q1 we have 0 < L/2 < x < L. In general the zero-point
is closer to the smaller charge.
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q1 q2

D

x

Figure 23.8: Lecture-Example 23.15

• Repeat the above for unlike q1 and q2. For this case, argue that the electric field can not go to zero
in the region between the charges. Further, using appropriate inequalities involving the charges and the
distances, argue that the electric field goes to zero in the region next to the smaller charge.

Lecture-Example 23.16: (Uniformly charged rod)
Show that the electric field due to a uniformly charged rod (of infinite length, charge per unit length λ) at a
distance a away from the rod is given by

~E = r̂
2kλ

a
, (23.22)

where r̂ points away from the rod.

Lecture-Example 23.17: (Uniformly charged ring)
Show that the electric field due to a uniformly charged ring of radius r at a distance x away from the ring along
the symmetry axis is given by

~E = r̂
kQx

(r2 + x2)
3
2

, (23.23)

where r̂ points away from the ring along the symmetry axis.

Lecture-Example 23.18: (Uniformly charged plate)
Show that the electric field due to a uniformly charged plate with uniform charge density σ is given by

~E = r̂
σ

2ε0
, (23.24)

where r̂ points away from the plate.

• Determine the surface charge density needed to generate an electric field of 100N/C? (Answer: 1.8 nC/m2.)

We summarize the electric fields for some relevant geometries here:

Point : ~E = r̂
kQ

r2
, r̂ → radially outward (spherically), (23.25a)

Line : ~E = r̂
2kλ

r
, λ =

Q

L
, r̂ → radially outward (cylindrically), (23.25b)

(Dielectric) Plane : ~E = r̂
σ

2ε0
= r̂ 2πkσ, σ =

Q

A
, r̂ → normal to the plane, (23.25c)

(Conducting) Plane : ~E = r̂
σ

ε0
, σ =

Q

A
, r̂ → normal to the plane. (23.25d)
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23.4 Motion of a charged particle in a uniform electric field

A charged particle experiences a force in an electric field. If the electric force is the only force acting on the
charge the corresponding acceleration is

~a =
q~E

m
. (23.26)

Observe that, unlike the case of acceleration in a gravitational field, the acceleration in an electric field is mass
dependent. That is, a proton will experience an acceleration 2000 times smaller than that experienced by an
electron, because a proton is ∼ 2000 times heavier than an electron.

Lecture-Example 23.19:

• Determine the acceleration of a ball of mass m = 10.0 g with a charge q = 1.0µC in an electric field
E = 1000.0N/C. (Answer: 0.10m/s2.)
Determine the acceleration of an electron in an electric field E = 1000.0N/C. (Answer: 1.8× 1014m/s2.)
Determine the acceleration of a proton in an electric field E = 1000.0N/C. (Answer: 9.6× 1010m/s2.)

• Starting from rest, determine the distance travelled by the ball, electron, and the proton, in the presence
of this electric field in 1 ns.

• Starting from rest, determine the speed attained by the ball, electron, and the proton, in the presence of
this electric field in 1 ns.

Lecture-Example 23.20: (Electric forces are mass dependent)
Recollect from Table 23.1 that the proton and the electron have the same magnitude of charge on them. Further,
the proton is 1836 times heavier than the electron.

• A proton and an electron are released from rest in a uniform gravitational field ~g = −ẑ g. Find the ratio
of the times taken for them to move a distance y.

• A proton and an electron are released from rest in a uniform electric field ~E = −ẑE. Find the ratio of
the times taken for them to move a distance y.

Lecture-Example 23.21:
A proton is projected horizontally with an initial speed of vi = 1.00× 105m/s. It enters a uniform electric field
with a magnitude of E = 100.0N/C pointing vertically down. The electric field is confined between plates with
a vertical distance y = 2.0 cm. Determine the horizontal distance x the proton moves before it hits the bottom
plate.

• The acceleration experienced by the proton in the y direction due to the electric field is given by

ay =
q

m
E ∼ 9.6× 109

m

s2
. (23.27)

This is stupendous in comparison to the acceleration due to gravity, 9.8m/s2. Thus, we can neglect the
gravitational effects all together in this case.
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• The kinematics under this constant acceleration are governed by the equations

x = vit, (23.28a)

y =
1

2
ayt

2. (23.28b)

The second equation here lets us evaluate the time it takes for the proton to fall the distance y as
t = 2.0× 10−6 s. This in turn lets us evaluate the horizontal distance x to be 20 cm.

• Repeat the above for an electron. Now we can find ay = 1.7 × 1013m/s2, which is about 2000 times
larger than that of a proton. The time it takes to hit the bottom plate is t = 4.9× 10−8 s. This leads to
x = 4.9mm.

• Repeat this for a metal sphere of mass m = 1.0 g and charge q = 10.0µC. Is it reasonable to neglect
gravity in this case?

23.5 Problems

23.5.1 Conceptual questions

1. (5 points.) Is the following statement true? There exists no electric forces between atoms because atoms
are neutral.

2. (5 points.) Two positive charges and two negative charges are placed on the corners of a square. Each
of the four charges is of the same strength. When the charges are let go, do the charges tend to move
inward (implode) or outward (explode)?

3. (5 points.) What is the magnitude and direction of the total electric force on an electric dipole when it
is placed in a uniform electric field?

4. (5 points.) The electric field due to a uniformly charged solid sphere of radius R at a distance r > R
from the center of the sphere is given by

E = r̂
1

4πε0

Q

r2
, r > R, (23.29)

where Q is the total charge on the sphere and r̂ specifies the direction of the electric field to be pointing
radially outwards. Observe that the electric field outside the sphere is independent of the radius of the
sphere. Thus, in principle, one could even take the limit R → 0 representing a point particle. With this
information, inquire what is the radius of electron. (Do not confuse this with the classical radius of a
electron, which is just a physical constant.)

5. (5 points.) Electric field lines is a visual representation of electric field.

(a) How does one (visually or qualitatively) read out the direction and magnitude of electric field (at a
point) from the associated electric field lines?

(b) Can two lines in the electric field lines for a configuration of charges intersect? If yes, give an example,
otherwise, why not?

(c) Draw the electric field lines for a configuration consisting of three identical positive charges placed
at the corners of an equilateral triangle. Qualitatively, read out the points where the field lines go to
zero. There are how many such points? Look up the answer in the literature, which might surprise
you.

(d) Do the electric field lines at the center of the equilateral triangle in the above configuration intersect?
Explain.
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6. (5 points.) Vertical wind shear displaces postive charges from the ground to clouds. Thus, the clouds
and the ground can be modeled as oppositely charged parallel plates. When the electric field generated
by this configuration is about 105 N/C or more, it can strip the charges inside an atom. This triggers an
avalanche, which is the phenomenon of lightning. This is called electric breakdown of air. That is, air
ceases to be an insulator when the electric field exceeds a critical value. Look up the difference between
positive lightning and negative lightning.

7. (5 points.) Projectile motion of a charged ball on the surface of Earth on the day of lightning.

8. (5 points.) Ball lightning.

9. (5 points.) Lightning and car.

https://www.weather.gov/safety/lightning-cars

https://www.youtube.com/watch?v=GZxgYNnkBd0

23.5.2 Problems based on lectures

1. (10 points.) Determine the number of protons in one nano-gram of protons. Then, calculate the total
charge of one nano-gram of protons.

2. (10 points.) Two identical conducting spheres A and B carry equal charge. They are separated by a
distance much larger than their diameters. A third identical conducting sphere C is uncharged. Sphere
C is first touched to A, then to B, and finally removed.

(a) As a result, what is the charge on A, if it was originally Q.

(b) As a result, what is the charge on B, if it was originally Q.

(c) As a result, what is the electrostatic force between A and B, if it was originally F .

3. (10 points.) Three identical charges of equal magnitude q are placed at the corners of an equilateral
triangle of length L. Determine the magnitude of the Coulomb force on one of the charges.

4. (10 points.) Draw the electric field lines for a configuration consisting of two positive charges with
unequal charge on them.

(a) The direction of the electric field at a point in space is determined by the tangent to the electric field
line passing through the point. What characteristic of the field lines represents the magnitude of the
electric field?

(b) Can two electric field lines intersect?

(c) For this configuration, there are how many points where the electric field is zero.

5. (10 points.) Two charges, q1 = +1.00µC and q2 = −8.00µC are a distance D apart. Refer Figure 23.9.
As a multiple of distance D, at what coordinate x on the line connecting the two charges is the total
electric field zero?

q1 q2

D

x

Figure 23.9: Problem 5

https://www.weather.gov/safety/lightning-cars
https://www.youtube.com/watch?v=GZxgYNnkBd0
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6. (10 points.) The electric dipole moment of a configuration consisting of two equal and opposite point
charges, separated by a distance d, is defined to be

~p = q~d, (23.30)

where ~d points from the negative to the positive charge and d = |~d|. Let d = 2a. Given q = 1.0µC,
d = 2.00 cm, and y = 5.00 cm.

+q −q

O

y

a

~p

Figure 23.10: Problem 6

(a) Determine the magnitude and direction of the electric dipole.

(b) Determine magnitude and direction of the total electric field at O along a bisector of the electric
dipole, a distance y away from the center of the dipole.

(c) Calculate the magnitude and direction of the force on a charge Q = +7.0µC when placed at O.

7. (10 points.) Consider a flat plate of infinite extent with a uniform surface charge density σ. Derive an
expression for the magnitude and direction of the electric field due to this plate. In particular, inquire
how the magnitude of electric field increases or decreases as you move farther away from the plate.

8. (10 points.) An electron and a proton are each placed at rest in a uniform electric field. The particles
accelerate to respective speeds ve and vp after being released simultaneously. Determine the ratio ve/vp.
Which of them gains higher speed? Which of them has a higher kinetic energy?
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Chapter 24

Gauss’s law

24.1 Electric flux

Flux associated with a field ~E across an infinitesimal area dA is defined as

dΦE = ~E · d~A. (24.1)

Flux associated with a field ~E across a surface area S is then given by

ΦE =

∫

S

~E · d~A. (24.2)

Electric field lines represent the ‘flow’ of the electric field, and a quantitative measure of this flow across a
surface is the electric flux. It is a measure of the number of electric field lines crossing a surface (presuming a
fixed number of lines were originating from sources).

Area in our discussions is a vector. Its magnitude is the area of the surface in context, and its direction is
normal to the surface. A surface encloses a volume and the normal to the surface is outward with respect to
this volume. For an infinite plane, the ambiguity in the sign of the direction of the normal could be removed if
we specify which half it is enclosing.

Lecture-Example 24.1:
The drawing shows an edge-on view of a planar surface of area 2.0m2. Given θ = 30◦. The uniform electric
field ~E in the drawing has a magnitude of 3.0× 102N/C.

θ ~E

Figure 24.1: Problem 8.

• Calculate the electric flux across the planar surface. Remember that area is a vector normal to the surface.
(Answer: ΦE = 3.0× 102Nm2/C.)

417
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Lecture-Example 24.2:
Consider a sheet of paper folded and kept in a uniform electric field ~E = E0x̂, with E0 = 100.0N/C. The
vertical side of the area along ŷ is 10.0 cm in length and it is 10.0 cm deep in the ẑ direction. The inclined side
has the same height in the ŷ and makes 60.0◦ with respect to the vertical. Calculate the flux across surface S1

and S2.

• The flux across surface S1 is given by

ΦS1

E =

∫

S1

E0x̂ · x̂dA =

∫

S1

E0dA = E0A1, (24.3)

where we used d~A = ~x dA.

• The flux across surface S2 is given by

ΦS2

E =

∫

S2

E0x̂ · n̂dA =

∫

S2

E0 cos θdA = E0A2 cos θ = E0A1, (24.4)

where we used d~A = ~n dA, and ~x · ~n = cos θ, and A1 = A2 cos θ.

Lecture-Example 24.3:
Consider a uniform electric field ~E = E0x̂. A cube, of edge length L = 10.0 cm, is placed in this electric field
with one of the faces perpendicular to the field. Find the electric flux across each of the faces of the cube. Find
the total flux across the surface of the cube.

Lecture-Example 24.4:
Consider a region of uniform electric field

~E = (1.0 î+ 2.0 ĵ)× 103
N

C
. (24.5)

Calculate the electric flux through a rectangular plane 0.40m wide and 0.20m long if the plane is parallel to
the yz plane.

Lecture-Example 24.5:
Flux across a sphere enclosing a point charge at the center.

• Using

~E =
kQ

r2
r̂ and d~A = r̂ dA (24.6)

the flux is given by

Φ =

∮

S

~E · dA =
kQ

r2

∮

S

dA =
kQ

r2
4πr2 =

Q

ε0
. (24.7)
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24.2 Gauss’s law

Gauss’s law states that the electric flux across a closed surface is completely determined by the total charge
enclosed inside the surface,

ΦE =

∮

S

~E · d~A =
Qen

ε0
, (24.8)

where Qen is the total charge enclosed inside the closed surface S.

Lecture-Example 24.6: (Point charge)
Using the symmetry of a point charge, and presuming the electric field to be radial and isotropic, derive
Coulomb’s law using Gauss’s law,

~E =
kQ

r2
r̂. (24.9)

Lecture-Example 24.7: (Charged spherical shell)
Determine the electric field inside and outside a uniformly charged spherical shell to be

~E =











kQ

r2
r̂, R < r,

0, r < R.

(24.10)

• This suggests that we can not infer about the charge distribution of a sphere based on the measurement
of electric field outside the sphere. For example, what can we say about the charge distribution of proton,
that is, is it a uniformly charged solid or a shell?

• By analogy, we can conclude that the acceleration due to gravity inside a spherical shell with uniform
mass density on the surface will be zero.

Lecture-Example 24.8: (Perfect Conductor of arbitrary shape)
Prove that the electric field inside a conductor of arbitrary shape is exactly zero.

• Inside a conductor is the safest place during lightning.

Lecture-Example 24.9: (Structure of an atom)
The electric field inside and outside a uniformly charged solid sphere of radius R and charge Q is given by

~E =















kQ

r2
r̂, R < r,

kQ

R3
r r̂, r < R.

(24.11)

• Plot the magnitude of the electric field as a function of r.

• Discuss how this contributed to the Rutherford’s model for the structure of atom.
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Lecture-Example 24.10:
Consider a perfectly conducting sphere of radius R = 3.0 cm with charge Q = 1.0µC. Determine the electric flux
through the surface of a (Gaussian) sphere of radius 2.0 cm, concentric with respect to the conducting sphere.

Lecture-Example 24.11: (Uniformly charged line)
Using Gauss’s law determine the electric field near a uniformly charged line (of infinite extent) with charge per
unit length λ to be

~E =
2kλ

r
r̂, (24.12)

where r̂ is the unit vector perpendicular to the line charge.

Lecture-Example 24.12: (Conducting versus non-conducting plate)
Using Gauss’s law show that the electric field near a uniformly charged plate is constant and given by

~E =











σ

2ε0
, non-conducting (dielectric) plate,

σ

ε0
, conducting plate,

(24.13)

where σ is the charge per unit area on the plate.

24.3 Problems

24.3.1 Conceptual questions

1. (5 points.) Watch the following YouTube video by Physics Girl

https://youtu.be/ot4_jVFXxUU

on Faraday cage. Based on this idea explain why your phone coverage is spotty inside concrete buildings.

24.3.2 Problems based on lectures

1. (10 points.) Watch the following YouTube video by Bruce Yeany

https://youtu.be/-csQiBHoucI

to gain insight on how easy it is to charge styrofoam balls.

h

Figure 24.2: Two charged styrofoam balls trapped in a cylinder.

https://youtu.be/ot4_jVFXxUU
https://youtu.be/-csQiBHoucI
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Two identical styrofoam balls have a charge Q on each one of them. They are trapped inside a cylinder so
that the electrostatic repulsion on the top ball from the bottom balances the gravitational force acting on
it. Refer Figure 24.2. Assume that the walls of the cylinder does not exert any net vertical force on the
top ball. Given that the balls weigh 0.040 grams each and the height h = 1.0 cm, determine the charge Q
on each ball.

Solution

2. (10 points.) Watch the following YouTube video by Science Marshall

https://youtu.be/ysaUfsJyer0

on how a Cathode Ray Tube works.
x

y

Figure 24.3: Deflection of an electron beam in a cathode ray tube.

The deflection plates of a cathode ray tube has an electric field of 1.0 × 103N/C. Let the electron beam
be aligned parallel to the plates. The electrons enter the plates with a speed of 4.0 × 106m/s. The
horizontal distance of the plates is x = 5.0 cm and the beam gets deflected vertically by a distance y.
Refer Figure 24.3.

(a) What is magnitude and direction of the acceleration experienced by an electron due to the electric
field?

(b) How much time does an electron take to pass the distance x in the plates.

(c) Calculate the deflection y in centimeters.

Solution

3. (10 points.) A charge of 105µC is at the center of a cube of edge 75.0 cm. No other charges are nearby.

(a) Find the flux through each face of the cube.

(b) Find the flux through the whole surface of the cube.

(c) Would your answers to parts (a) or (b) change if the charge were not at the center?

Hints:

• Solve for second part using Gauss’s law, ΦE = Qencl

ǫ0
, to find flux through the whole surface.

• Notice that flux through one face is one-sixth of the flux through the whole surface

Solution

4. (10 points.) The charge per unit length on a long, straight filament is −88.5µC/m.

(a) Find the electric field 10.0 cm from the filament, where distances are measured perpendicular to the
length of the filament. (Take radially inward toward the filament as the positive direction.)

(b) Find the electric field 21.0 cm from the filament, where distances are measured perpendicular to the
length of the filament.

https://youtu.be/xoW9w2MS3Hw
https://youtu.be/ysaUfsJyer0
https://youtu.be/P-lYtAXcCAo
https://youtu.be/76f5_bcHaME
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(c) Find the electric field 110 cm from the filament, where distances are measured perpendicular to the
length of the filament.

Hints: Use
~E = r̂

2keλ

r
= r̂

λ

2πε0r
. (24.14)

Solution

5. (10 points.) A large, flat, horizontal sheet of dielectric material has a charge per unit area of 2.30µC/m2.
Find the electric field just above the middle of the sheet.

Hints: Use
~E = n̂

σ

2ε0
. (24.15)

Solution

6. (10 points.) A large, flat, horizontal sheet of conducting material has a charge per unit area of
8.85µC/m2. Find the electric field just above and below the middle of the sheet.

Solution

7. (10 points.) Consider a thin, spherical shell of radius 15.0 cm with a total charge of 32.2µC distributed
uniformly on its surface.

(a) Find the electric field 10.0 cm from the center of the charge distribution.

(b) Find the electric field 22.0 cm from the center of the charge distribution.

Hints: Use
~E = r̂

keQ

r2
. (24.16)

Solution

8. (10 points.) Two identical conducting spheres each having a radius of 0.500 cm are connected by a light
2.10m long conducting wire. A charge of 56.0µC is placed on one of the conductors. Assume the surface
distribution of charge on each sphere is uniform. Determine the tension in the wire.

Hints: The charge will get equally distributed on the two conducting spheres. The repulsive electrostatic
force between two spheres is balanced by the tension in the wire. (Conducting sphere with charge on its

surface behaves like a point charge.)

9. (10 points.) Charges are placed on the z = 0 plane such that it forms a square lattice of length a that
extends to infinity in the plane. Refer Figure 24.4. The charge on each lattice point has a magnitude of
17.7× 10−12C. Determine the electric flux through the surface G of a sphere of radius R = 1.7 a shown
in Figure 24.4.

https://youtu.be/gLH3pZF4qC8
https://youtu.be/fVb6tUTAmo4
https://youtu.be/pe-Sn_0UFA8
https://youtu.be/XQf9XaFGuV8
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Figure 24.4: Problem 9

10. (10 points.) A point charge Q sits at the center of a charged spherical shell of radius R with charge Q′

uniformly distributed on its surface. Using Gauss’s law find the expression for electric field inside and
outside the spherical shell.
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Chapter 25

Electric potential energy and electric
potential

25.1 Work done by the electric force

The electric force on a charge q in an electric field ~E is given by

~F = q~E. (25.1)

The work done by the electric force on charge q is given by

W =

∫ b

a

~F · d~l = q

∫ b

a

~E · d~l, (25.2)

where the integral is evaluated along a path connecting the position points ~a and ~b.

Lecture-Example 25.1: Consider a region of uniform electric field ~E = −E ĵ of magnitude E = 1.0×103N/C
and direction vertically down. Determine the work done by the electric force when a charged sphere with charge
q = 10.0µC is moved along a path. Let the vertical distance between points ‘1’ to ‘2’ be h = 10.0 cm.

1

2 3

~E

Figure 25.1: Lecture-Example 25.1

• The work done by the electric force when the particle moves along the path connecting points ‘1’ to ‘2’,
‘2’ to ‘3’, and ‘3’ to ‘1’, are

W1→2 = −qEh, (25.3a)

W2→3 = 0, (25.3b)

W3→1 = qEh. (25.3c)

425
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• Further, the total work done by the electric force for the closed loop 1 → 2 → 3 → 1 is

W1→2→3→1 = 0. (25.4)

• Note that the work done is zero for a path element that is perpendicular to the electric field. An arbitrary
path can be broken down into infinitely small vertical and horizontal displacements. Thus, for the case
of uniform electric field we can show that the work done is independent of the path and only depends on
the initial and final points.

25.2 Electric potential energy

The work done by the electric force is zero for a closed path (in the absence of time varying magnetic fields),

∮

q~E · d~l = 0. (25.5)

As a corollary, the work done by the electric force is completely determined by the initial and final points of
the path traversed. This is the statement of the electric force being a conservative force. For a conservative
force it is convenient to define an associated potential energy, in the statement of work-energy theorem. Thus
we define the electric potential energy as

∆U = Uf − Ui = −Wi→f = −
∫ f

i

q~E · d~l. (25.6)

Lecture-Example 25.2: (Point charges)
A positive charge q2 is moved in the vicinity of a another positive charge q1. Determine the work done by the
electric force when the charge q2 is moved along a path.

1

2

3

4

Figure 25.2: Lecture-Example 25.2

• The work done by the electric force on the charge q2 when it is moved along the path ‘1’ to ‘2’ is

W1→2 =

∫ 2

1

q2~E1 · d~l =
∫ 2

1

kq1q2
r2

r̂ · d~l =
∫ 2

1

kq1q2
r2

dr = −kq1q2
r

∣

∣

∣

2

1
, (25.7)

where we used d~l = −r̂dl = r̂dr. Similarly we can evaluate W2→3 W3→4, and W4→1.
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• If we choose the initial point to be at infinity, the work done by the electric force while charge q2 is moved
from infinity to a distance r away from charge q1 is

U =
kq1q2
r

. (25.8)

• Plot the electric potential energy U between two positive charges q1 and q2 as a function of r. Next, plot
the electric potential energy U between two unlike charges q1 and q2 as a function of r. Interpret these
plots as a statement of the fact that force is the manifestation of the system trying to minimize its energy.

• Equipotential surfaces are surfaces perpendicular to the electric field. The work done by the electric force
is zero while moving on equipotential surfaces.

Lecture-Example 25.3: (Energy required to assemble a set of charges)
Show that the energy required to assemble three positive charges q1, q2, and q3, at relative distances r12, r23,
and r31, is

U =
kq1q2
r12

+
kq2q3
r23

+
kq3q1
r31

. (25.9)

• Show that the total energy required to assemble three identical positive charges q at the corners of an
equilateral triangle of side L is

U = 3
kq2

L
. (25.10)

• Show that the total energy required to assemble four identical positive charges q at the corners of a square
of side L is

U = (4 +
√
2)
kq2

L
. (25.11)

Lecture-Example 25.4:
A sphere with mass m2 = 10 g and charge q2 = 1.0µC is fired directly toward another sphere of charge
q1 = 10.0µC (which is pinned down to avoid its motion). If the initial velocity of charge q2 is vi = 10.0m/s
when it is ri = 30 cm away from charge q1, at what distance away from the charge q1 does it come to rest?

• Using conservation of energy we have

kq1q2
ri

+
1

2
m2v

2
i =

kq1q2
rf

+
1

2
m2v

2
f . (25.12)

Answer: rf = 11 cm.

Lecture-Example 25.5:
Two oppositely charged, parallel plates are placed d = 8.0 cm apart to produce an electric field of strength
E = 1.0× 103N/C between the plates. A sphere of mass m = 10.0 g and charge q = 10.0µC is projected from
one surface directly toward the second. What is the initial speed of the sphere if it comes to rest just at the
second surface?

• Using conservation of energy we have
1

2
mv2 = qEd. (25.13)

Answer: v = 0.4m/s.
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25.3 Electric potential

Electric potential energy per unit charge is defined as the electric potential. It is measured in units of
Volt=Joule/Coulomb. Thus,

∆U = q∆V. (25.14)

Thus,

∆V = −
∫ f

i

~E · d~l. (25.15)

For a point charge, after choosing the electric potential to be zero at infinity, we have

V =
kq

r
. (25.16)

For uniform electric field created by oppositely charged parallel plates, after choosing the electric potential to
be zero at the negative plate, we have

V = Ed, (25.17)

d being the distance from the negative plate.

Lecture-Example 25.6:
Two electrons and two protons are placed at the corners of a square of side 5 cm, such that the electrons are at
diagonally opposite corners.

• What is the electric potential at the center of square?

• What is the electric potential at the midpoint of either one of the sides of the square?

• How much potential energy is required to move another proton from infinity to the center of the square?

• How much additional potential energy is required to move the proton from the center of the square to one
of the midpoint of either one of the sides of the square?

Lecture-Example 25.7:
The two charges in Figure 25.3 are separated by a distance a. Let a = 5.00 cm, q = 5.00 nC, Q = 1.00µC.

a

a−q +q

A B

Figure 25.3: Lecture-Example 25.7

• Find the electric potential at point A, choosing the potential at infinity to be zero.

Answer: VA = −kq
a

(

1− 1√
2

)

= −263V.
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• Find the electric potential at point B, choosing the potential at infinity to be zero.

Answer: VB = +kq
a

(

1− 1√
2

)

= +263V.

• Determine the potential difference between points A and B.

Answer: VB − VA = +2kq
a

(

1− 1√
2

)

= +527V.

• Determine the change in electric potential energy when a third charge of Q is moved from point A to B.

Answer: ∆U = +2kqQ
a

(

1− 1√
2

)

= +527µJ.

Lecture-Example 25.8:
Charges of −q and +2q are fixed in place, with a distance of a = 2.0m between them. See Fig. 25.4. A dashed
line is drawn through the negative charge, perpendicular to the line between the charges.

y

a−q
+2q

Figure 25.4: Lecture-Example 25.8

• On the dashed line, at a distance y from the negative charge, there is at least one spot where the total
potential is zero. Find y. (Answer: y = ±a/

√
3.)

• On the line connecting the charges, between the two charges, find the spot where the total potential is
zero. (Answer: Distance a/3 to the right of −q charge.) On the line connecting the charges, to the left of
the smaller charge, find the spot where the total potential is zero. (Answer: Distance a to the left of −q
charge.)

• On the line connecting the charges, to the right of the larger charge, show that there is no spot where
the total potential is zero. In general for α = q2/q1 < 0, remembering that the potential involves the
magnitude of the distance, the two solutions on the line connecting the charges are contained as solutions
to the quadratic equation,

(α2 − 1)z2 + 2az − a2 = 0, (25.18)

which has solutions

z =
a

1 + α
and z =

a

1− α
. (25.19)

• For like charges, α = q2/q1 > 0, there is no spot with zero potential other than infinity, because two
positive numbers can not add to give zero.

• Determine the equation of the equipotential surface of zero potential. Discuss the shape of this surface
with respect to α.
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25.4 Gradient

The gradient ~∇ of a function f(x, y, z) is defined as

~∇f(x, y, z) = î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z
. (25.20)

25.5 Force as gradient of energy

For conservative forces the integral in Eq. (25.6) can be inverted to yield

~F = − ~∇U. (25.21)

This states that the force is the manifestation of the system trying to minimize its energy. Similarly, Eq. (25.15)
can be inverted to yield

~E = − ~∇V, (25.22)

which determines the electric field as the gradient (derivative) of the electric potential.

Lecture-Example 25.9: (Interaction energy for point charges)
Plot the electric potential energy of two charges as a function of separation distance between the charges. Choose
potential energy to be zero for infinite separation distance. Consider both like and unlike charges. Interpret
force as the negative derivative of potential energy. Repeat this for electric potential, choosing it to be zero at
infinity.

Lecture-Example 25.10: (Parallel plates)
Consider uniformly charged parallel plates containing opposite charges. Plot the electric potential as a function
of the distance from the negative plate. Choose the electric potential to be zero at the negative plate.

Lecture-Example 25.11: (Two point charges)
Consider two positive charges q, both a distance a from the origin such that their separation distance is 2a.
Determine the electric potential on the x axis to be

V (x) =
2kq√
x2 + a2

. (25.23)

Using the fact that the electric field is the negative gradient of the electric potential, calculate the x-component
of the electric field vector on the x axis to be

Ex = −∂V

∂x
=

2kqx

(x2 + a2)
3
2

. (25.24)

• Discuss the limits x ≪ a and a ≪ x.

Lecture-Example 25.12: (Ring)
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Consider a uniformly charged ring of radius r with total charge Q placed on the yz plane such that the origin
is the center of the ring. Determine the electric potential on the x axis to be

V (x) =
kQ√
x2 + r2

. (25.25)

Using the fact that the electric field is the negative gradient of the electric potential, calculate the x-component
of the electric field vector on the x axis to be

Ex = −∂V

∂x
=

kQx

(x2 + r2)
3
2

. (25.26)

• Discuss the limits r ≪ a and a ≪ r.

Lecture-Example 25.13: (Disc)
Consider a uniformly charged disc of radius R with charge per unit area σ placed on the yz plane such that the
origin is the center of the disc. Determine the electric potential on the x axis to be

V (x) = − σ

2ε0

[

x−
√

x2 +R2

]

. (25.27)

Using the fact that the electric field is the negative gradient of the electric potential, calculate the x-component
of the electric field vector on the x axis to be

Ex = −∂V

∂x
=

σ

2ε0

[

1− x√
x2 +R2

]

. (25.28)

• Show that this leads to the potential and electric field of a point charge in the limit R ≪ x.

• Analyze the limit x ≪ R. Plot the electric potential as a function of x for this case.

25.6 Electric potential inside a perfect conductor

The electric field is zero inside a perfect conductor, (otherwise the charges will experience a force,) which implies
that the electric potential is a constant inside the conductor.

Lecture-Example 25.14:
Determine the electric potential inside and outside a perfectly conducting charged sphere of radius R. Plot this.

Lecture-Example 25.15: (Fork in a microwave)
To illustrate why pointed metals spark inside a microwave, let us consider two conducting spheres of radius R1

and R2, connected by a conducting thread, but placed significantly away from each other.

• Using the fact that the electric potential is the same at the surface of the two spheres,

V1 = V2, (25.29)

show that the ratio of the charges on the two spheres is

Q1

Q2

=
R1

R2

. (25.30)

Thus, the charge is proportional to the radius.
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• Show that the ratio of the electric fields is
E1

E2

=
R2

R1

. (25.31)

Thus, the electric field is inversely proportional to the radius. This implies the smaller sphere will have a
larger electric field near its surface. If the electric field is large enough to breakdown air, we see a spark.

25.7 Problems

25.7.1 Conceptual questions

1. (5 points.) Draw equipotential surfaces for the following configurations.

(a) Single point charge.

(b) Two positive charges of equal magnitude.

(c) Three positive charges of equal magnitude placed at the corners of an equilateral triangle.

2. (5 points.) What is an equipotential surface? Draw the equipotential surfaces between two parallel plates
with equal and opposite charge per unit area on the two plates.

3. (5 points.) The electric potential on the surface of a solid perfectly conducting sphere of radius R with
charge Q on it is

1

4πε0

Q

R
. (25.32)

What is the electric potential at a distance R/2 from the center on this sphere?

4. (5 points.) What is connection between the concept of electric potential difference and concept of voltage
in electrical circuits? What is the relevance of ground in electrical circuits?

5. (5 points.) A tube light glows when brought close to a van de Graaff generator. The dome of a van de
Graaff generator is a charged sphere, with eectric charge collected on the dome using a moving belt. A
charged sphere creates a potential difference radially outwards around it. Can you use this procedure to
generate potential differences to power your phone? In other words, how can you harness energy from
static electricity generated due to friction?

6. (5 points.) Determine the total electrical energy required to assemble two identical positive charges +Q
at two corners and one negative change −Q at the third corner of an equilateral triangle of length L.
Assume that the charges are brought from infinity.

25.7.2 Problems based on lectures

1. (10 points.) A sphere with uniform charge distribution −Q = −3.0µC is fixed at the origin. Point A is
on a sphere of radius 5.0 cm and point B is on a sphere of radius 10.0 cm. Refer Figure 25.5.

(a) What is the work done by the electric force acting on charge q = +2.0µC, when q is moved from
point A to point B.

(b) What is the change in the electric potential energy between −Q and q when q is moved from point
A to point B.

(c) If there are no other forces acting on charge q, using the work-energy theorem calculate the change
in kinetic energy of charge q.

Solution

https://youtu.be/Fss7GX2rhAk
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b

b

−Q

A

B

Figure 25.5: Problem 1

b

b

+λ

A

B

Figure 25.6: Problem 2

2. (10 points.) A cylinder with uniform line-charge distribution λ = +5.0µC/m is fixed at the origin. Point
A is on a cylinder of radius 10.0 cm and point B is on a cylinder of radius 20.0 cm. Refer Figure 25.6.

(a) What is the work done by the electric force acting on charge q = +2.0µC, when q is moved from
point A to point B.

(b) What is the change in the electric potential energy between the line-charge λ and q when q is moved
from point A to point B.

(c) If there are no other forces acting on charge q, using the work-energy theorem calculate the change
in kinetic energy of charge q.

Solution

3. (10 points.) A positive charge Q1 = 1.0 nC is held fixed. Another positive charge Q2 = 2Q1 is tied
to charge Q1 using a string of length a = 5.0 cm. Assume the radius of the two charges to be small in
comparison to a. The charges have masses m1 = 0.05 grams and m2 = 2m1. When the string is cut
the two charges fly off in opposite directions. Determine the speed of each of the charges when they are
(infinitely) far apart. (Hint: Use conservation of momentum and conservation of energy.)

Solution

4. (10 points.) Determine the total energy required to assemble four identical positive charges Q at the
corners of a square of length L. Assume that the charges are brought from infinity.

https://youtu.be/hLImIzNHq4w
https://youtu.be/kHzAlcs-fsI
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Solution

5. (10 points.) Four charges q1 = q, q2 = −2q, q3 = −3q, and q4 = 4q, are placed at the corners of a square
of side L, such that q1 and q4 are at diagonally opposite corners. Refer Figure 25.7.

b

bb

b

q4

q2q1

q3

b

b

b

b

a

b

c

d

Figure 25.7: Problem 5

(a) What is the electric potential at the center of square?

(b) What is the electric potential at point a?

(c) What is the electric potential at point b?

(d) What is the electric potential difference between points a and c?

(e) How much potential energy is required to move another charge q from infinity to the center of the
square?

(f) How much additional potential energy is required to move this charge from the center of the square
to point a?

Solution

6. (10 points.) The electric dipole moment of a configuration consisting of two equal and opposite point
charges, separated by a distance d, is defined to be

p = qd, (25.33)

where d points from the negative to the positive charge and d = |d|. Let d = 2a. The electric potential
of the electric dipole at the point (x, y, z) is given by the expression

V (x, y, z) =
1

4πε0

q
√

(x2 + y2 + (z − a)2
− 1

4πε0

q
√

(x2 + y2 + (z + a)2
. (25.34)

The electric field of the electric dipole can be calculated using

E(x, y, z) = −∇V (25.35a)

= −î
∂V

∂x
− ĵ

∂V

∂y
− k̂

∂V

∂z
(25.35b)

(a) Calculate the electric field on the x axis.

(b) Determine the electric field on the x axis for a ≪ x.

(c) Calculate the electric field on the z axis.

(d) Determine the electric field on the z axis for a ≪ z.

Solution

https://youtu.be/oxT3B73zQ2Q
https://youtu.be/1BjAOwBlVLQ
https://youtu.be/iRFBMH_ivE0
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b

+q−q

(x, y, z)

aa

z

x

Figure 25.8: Problem 6

7. (10 points.) Consider a uniformly charged disc of radius R with charge per unit area σ placed on the yz
plane such that the origin is the center of the disc. Determine the electric potential on the x axis to be

V (x) = − σ

2ε0

[

x−
√

x2 +R2

]

. (25.36)

Using the fact that the electric field is the negative gradient of the electric potential, calculate the x-
component of the electric field on the x axis to be

Ex = −∂V

∂x
=

σ

2ε0

[

1− x√
x2 +R2

]

. (25.37)

(a) Show that this leads to the potential and electric field of a point charge in the limit R ≪ x.

(b) Analyze the limit x ≪ R. Show that this leads to the potential and electric field for a non-conducting
uniformly charged plate. Plot the electric potential as a function of x for this case.

Solution

8. (10 points.) The electric field inside and outside a conducting sphere of radius R is given by

E =











0, r < R (inside),

1

4πε0

Q

r2
r̂, R < r (outside).

(25.38)

Determine the electric potential inside and outside the sphere using

∆V = −
∫

rf

ri

dl ·E. (25.39)

Hint: Since the electric field is zero inside a perfect conductor, the electric potential inside the conductor
must be a constant.

Solution

https://youtu.be/gGj1o36YRqY
https://youtu.be/J_ugPTGhecM
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Chapter 26

Capacitance

We have learned that positive charges tend to move from a point of higher electrical potential to a point of lower
electrical potential, and negative charges tend to do the opposite. This basic idea is at the heart of electrical
circuits, which involves flow of electric charges. A traditional battery is a device that provides a (constant)
potential difference, by moving charges against their natural tendency. The three basic electrical components
will will discuss are: capacitor, resistor, and inductor.

26.1 Capacitor

It is often desirable to have a reservoir of charge. A capacitor is an electrical component that can store charge.
It should be distinguished from a traditional battery whose purpose is to provide a potential difference. To
this end, consider two conducting objects, of arbitrary shape, with equal and opposite charge Q on them. The
charged objects create a potential difference, which is proportional to the charge,

V =
Q

C
, (26.1)

where the voltage V is the potential difference between the objects, effectively same as temporarily choosing
the negative plate to be at zero potential. Comparing Eq. (26.1) to the potential due to a point charge, we learn
that the capacitance has the dimensions given by

[C] = [ε0]L. (26.2)

Capacitance is measured in units of Farad, a derived unit. Equation (26.2) suggests that the capacitance is
completely determined by the geometry of the two conducting objects, and the permittivity of the medium.

Lecture-Example 26.1: (Parallel plate capacitor)
The electric field between parallel conducting plates, with uniform surface charge density σ = Q/A, is given by
Eq. (23.25d). (Using Gauss’s law the electric field outside the plates is zero.) Determine the potential difference
between the plates using Eq. (25.15). Comparing this with Eq. (26.1) we identify the capacitance for a parallel
plate capacitor to be

C =
ε0A

d
, (26.3)

where A is the area of the plates and d is the separation distance of the plates. Verify that the positively charged
plate is at higher electric potential.

Lecture-Example 26.2: (Cylindrical capacitor)

437
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The electric field between coaxial conducting cylinders, with uniform line charge density λ = Q/L, is given
by Eq. (23.25b). (Using Gauss’s law the electric field outside the outer cylinder and inside the inner cylinder
is zero.) Determine the potential difference between the cylinders using Eq. (25.15). Comparing this with
Eq. (26.1) we identify the capacitance for a parallel plate capacitor to be

C =
2πε0L

ln b
a

, (26.4)

where L is the length of the cylinder, and a and b are the radius of the inner and outer cylinders respectively.
Verify that the positively charged cylinder, irrespective of it being inside or outside, is at higher electric potential.

Lecture-Example 26.3: (Spherical capacitor)
The electric field between concentric conducting spheres, with charge Q uniformly distributed on the spheres,
is given by Eq. (23.25a). (Using Gauss’s law the electric field outside the outer sphere and inside the inner
sphere is zero.) Determine the potential difference between the spheres using Eq. (25.15). Comparing this with
Eq. (26.1) we identify the capacitance for a parallel plate capacitor to be

C =
4πε0

(

1
a
− 1

b

) , (26.5)

where a and b are the radius of the inner and outer spheres respectively. Verify that the positively charged
sphere, irrespective of it being inside or outside, is at higher electric potential.

Lecture-Example 26.4: (A rudimentary capacitor)
Cut out two strips of aluminum foil, A = 1 cm× 1m = 10−2m2. Place a sheet of paper in between the strips
and roll the sheets. Estimate the thickness of paper to be d = 100µm. The medium between the plates is paper,
which has a permittivity of ε ∼ 3.9 ε0. Estimate the capacitance of this construction. (Answer: C ∼ 1 nF.)

• Traditional capacitors used in electrical circuits range between picofarad (pF) and microfarad (µF). Para-
sitic capacitance, the unavoidable stray capacitance, is typically about 0.1 pF. More recently, capacitance
greater than kilofarad (kF) have been feasible, and are called supercapacitors.

26.2 Energy stored in a capacitor

The energy stored in a capacitor can be interpreted as the amount of work done to place the charges on to the
conducting plates. Starting from two neutral plates we can achieve this by moving a small charge dq in one
step, and repeating this until we collect a total charge of Q. In each step the work required to achieve this is

dU = V dq =
1

C
qdq. (26.6)

Notice that the work required in successive steps increases linearly. The total work is the integral of the above
expression, which is also the area of the triangle in the V -q plot. The energy stored in a capacitor is thus
determined to be

U =
Q2

2C
=

1

2
CV 2. (26.7)
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The energy in a capacitor is stored in the form of electric field. For the case of parallel plates, this is explicitly
obtained by rewriting the expression for energy in terms of the electric field E,

uE =
U

Ad
=

1

2
ε0E

2. (26.8)

Lecture-Example 26.5:
The breakdown field strength of paper is about ten times that of air, Ec ∼ 107V/m. Thus, determine the
maximum energy that can be stored in the rudimentary capacitor of Lecture-Example 26.4. (Answer: ∼ 1mJ.)

26.3 Capacitors in series and parallel

A capacitor when connected to a battery collects equal and opposite charges on its plates. The amount of
charge Q it collects is decided by the capacitance C and potential difference V across the plates,

Q = CV. (26.9)

Lecture-Example 26.6:
A capacitor of capacitance C = 10µF is connected across a 10.0V battery. Determine the charge accumulated
on the plates of the capacitor. (Answer: 100µC.)

Capacitors in series

Consider two capacitors in series as described in Figure 26.9. Since the potential difference across the battery
is distributed across the two capacitors we deduce that

V = V1 + V2. (26.10)

The charges on each of the capacitors will be identical,

Q1 = Q2, (26.11)

because by construction the part of circuit between the two capacitors is isolated. An equivalent capacitor Ceq

shown on the right side in Figure 26.9 is defined as a capacitor that will collect the same amount of charge from
the battery. Thus, using V1 = Q1/C1, V2 = Q2/C2, and V = Qeq/Ceq, in Eq. (26.10), we learn that

1

Ceq

=
1

C1

+
1

C2

. (26.12)

We can further deduce that
V1

V2

=
C2

C1

, (26.13)

which turns out to be handy in the analysis of more complicated configurations.

Lecture-Example 26.7: (Capacitors in series)
A potential difference V = 10.0V is applied across a capacitor arrangement with two capacitances connected
in series, C1 = 10.0µF and C2 = 20.0µF.

• Find the equivalent capacitance. (Answer: Ceq = 6.67µF.)
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V

C1

C2

V Ceq

Figure 26.1: Capacitors in series.

• Find the charges Q1 and Q2 on each of the capacitors. (Answer: Q1 = Q2 = 66.7µC.)

• Find the voltages V1 and V2 across each of the capacitors. (Answer: V1 = 6.67V and V2 = 3.33V.)

• Find the potential energies U1 and U2 stored inside each of the capacitors. (Answer: U1 = 222µJ and
U2 = 111µJ.)

Capacitors in parallel

Consider two capacitors in parallel as described in Figure 26.8. The potential difference across each capacitor
is identical,

V = V1 = V2. (26.14)

The total charge Q that is pulled out of the battery distributes on the two capacitors,

Q = Q1 +Q2. (26.15)

An equivalent capacitor Ceq shown on the right side in Figure 26.8 is defined as a capacitor that will collect the
same amount of charge from the battery. Thus, using Q1 = V1C1, Q2 = V2C2, and Q = V Ceq, in Eq. (26.15),
we learn that

Ceq = C1 + C2. (26.16)

We can further deduce that
Q1

Q2

=
C1

C2

, (26.17)

which turns out to be handy in the analysis of more complicated configurations.

V C1 C2 V Ceq

Figure 26.2: Capacitors in parallel.

Lecture-Example 26.8: (Capacitors in parallel)
A potential difference V = 10.0V is applied across a capacitor arrangement with two capacitances connected
in parallel, C1 = 10.0µF and C2 = 20.0µF.
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• Find the equivalent capacitance. (Answer: Ceq = 30.0µF.)

• Find the voltages V1 and V2 across each of the capacitors. (Answer: V1 = V2 = 10.0V.)

• Find the charges Q1 and Q2 on each of the capacitors. (Answer: Q1 = 0.100mC and Q2 = 0.200mC.)

• Find the potential energies U1 and U2 stored inside each of the capacitors. (Answer: U1 = 0.500mJ and
U2 = 1.00mJ.)

Lecture-Example 26.9:
Consider the circuit in Figure 26.10. Let V = 10.0V, C1 = 10.0µF, C2 = 20.0µF, and C3 = 30.0µF.

V

C2

C3

C1

Figure 26.3: Capacitor circuit.

• Determine the equivalent capacitance of the complete circuit. (Answer: Ceq = 22.0µF.)

• Determine the charge on each capacitor. (Answer: Q1 = 100µC, Q2 = Q3 = 120µC.)

• Determine the voltage across each capacitor. (Answer: V1 = 10.0V, V2 = 6.0V, V3 = 4.0V.)

• Determine the energy stored in each capacitor. (Answer: U1 = 500µJ, U2 = 360µJ, U3 = 240µJ.)

Lecture-Example 26.10:
Consider the circuit in Figure 26.4. Let V = 10.0V, C1 = 10.0µF, C2 = 20.0µF, and C3 = 30.0µF. Determine
the charges on each capacitor and voltages across each capacitor.

V

C2 C3

C1

Figure 26.4: Capacitor circuit.

• Determine the equivalent capacitance of the complete circuit. (Answer: Ceq = 8.33µF.)

• Determine the charge on each capacitor. (Answer: Q1 = 83.3µC, Q2 = 33.4µC, Q3 = 50.1µC.)
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• Determine the voltage across each capacitor. (Answer: V1 = 8.33V, V2 = V3 = 1.67V.)

• Determine the energy stored in each capacitor. (Answer: U1 = 347µJ, U2 = 27.9µJ, U3 = 41.8µJ.)

26.4 Electric dipole in a uniform electric field

An atom is charge neutral. But, an atom’s center of positive charge need not coincide with the atom’s center
of negative charge. Thus, an atom can be effectively described as two equal and opposite charges separated by
a distance d. The electric dipole moment ~p of such a configuration is given by

~p = q~d, (26.18)

where the vector ~d points from the negative charge to the positive charge. The total force on an electric dipole
in a uniform electric field is zero. However, it experiences a torque given by

~τ = ~p× ~E. (26.19)

If we choose the electric field to be in the direction of x̂ and the dipole moment to be in the x-y plane making
an angle θ with the electric field, we have

~τ = −ẑ pE sin θ. (26.20)

~E

θ

~p

b ẑ

Figure 26.5: Electric dipole in a uniform electric field.

The change in potential energy of the electric dipole is the work done by the torque, while it rotates about
the ẑ direction,

∆U = −
∫ θ

0

~τ · ẑdθ = pE(1− cos θ). (26.21)

This energy can also be interpreted as the work done by the forces, while the dipole rotates about ẑ,

∆U = −
∫ θ

0

~F · d~l = pE(1− cos θ), (26.22)

which uses the fact that the positive charge moves a distance −a(1 − cos θ)/2 and the negative charge moves
a distance a(1 − cos θ)/2. The change in potential energy is only determined up to a constant. We fix this
constant by choosing the potential energy to be zero when θ = π/2. For this choice, we have the potential
energy of an electric dipole in a uniform electric field given by

U = −~p · ~E = −pE cos θ. (26.23)
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As a check we verify that the torque on the electric dipole is indeed the negative derivative with respect to angle
θ,

~τ = −ẑ
∂

∂θ
U = −ẑ pE sin θ = ~p× ~E. (26.24)

θ

U

π
2

Figure 26.6: Potential energy of an electric dipole in a uniform electric field.

26.5 Dielectric material

26.6 Problems

26.6.1 Conceptual questions

1. (5 points.) A capacitor is a device that has the ability to store electrical energy. It is stored in the form of
electric field that is confined inside the capacitor. A supercapacitor is a capcitor with capacitance hundred
times larger than traditional capacitors. Explore the labs in SIUC that do research on supercapacitors.
You could start from this link.

2. (5 points.) Watch the following YouTube video by National High Magnetic Field Laboratory in Florida,

https://youtu.be/5hFC9ugTGLs,

on capacitors. Recall the definition of power as energy per unit time. Then, inquire if capacitor is employed
for operations requiring high power or low power. Imagine processes where you would employ a capacitor
over a battery.

26.6.2 Problems based on lectures

1. (10 points.) Derive the capacitance of a cylindrical capacitor consisting of coaxial conducting cylinders
of length L. The capacitor consists of a solid cylinder of radius a and another cylinderical conducting
shell of radius b > a.

Solution

2. (10 points.) A capacitor of capacitance 10.0 nF is connected to a 10.0V balltery. Let us assume that the
capacitor consists of two parallel plates of area A separated by distance d.

(a) Determine the charge accumulated on each plate of the capacitor.

(b) Determine the energy stored in the capacitor.

Solution

https://energy.siu.edu/about/connect/events/20150401-energystorageseminar.php
https://youtu.be/5hFC9ugTGLs
https://youtu.be/8mdWidVfksM
https://youtu.be/dr30DSy3akI


444 CHAPTER 26. CAPACITANCE

3. (10 points.) Determine the equivalent capacitance between points A and B in the circuit in Figure 26.7.
Given C1 = 1.0µF, C2 = 2.0µF, C3 = 3.0µF, and C4 = 4.0µF.

C1

C3 C4

C2

A

B

Figure 26.7: Problem 3

Solution

4. (10 points.) A potential difference V = 10.0V is applied across a capacitor arrangement with two
capacitances connected in parallel, C1 = 10.0µF and C2 = 20.0µF.

V C1 C2

Figure 26.8: Problem 4

(a) Find the equivalent capacitance.

(b) Find the charges Q1 and Q2 on each of the capacitors.

(c) Find the voltages V1 and V2 across each of the capacitors.

(d) Find the potential energies U1 and U2 stored inside each of the capacitors.

(e) Find the ratio V1/V2 of the voltages across the capacitors.

(f) Find the ratio Q1/Q2 of the charges on the capacitors.

(g) Find the ratio U1/U2 of the potential energies stored inside the capacitors.

Solution

5. (10 points.) A potential difference V = 10.0V is applied across a capacitor arrangement with two
capacitances connected in series, C1 = 10.0µF and C2 = 20.0µF.

(a) Find the equivalent capacitance.

(b) Find the charges Q1 and Q2 on each of the capacitors.

(c) Find the voltages V1 and V2 across each of the capacitors.

(d) Find the potential energies U1 and U2 stored inside each of the capacitors.

(e) Find the ratio V1/V2 of the voltages across the capacitors.

https://youtu.be/s7FtF74Enwo
https://youtu.be/3dyK2rPf_Ac
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V

C1

C2

Figure 26.9: Problem 5

(f) Find the ratio Q1/Q2 of the charges on the capacitors.

(g) Find the ratio U1/U2 of the potential energies stored inside the capacitors.

Solution

6. (10 points.) In the circuit in Figure 26.10 determine the charge on capacitor C3. Let V = 10.0V,
C1 = 10.0 nF, C2 = 20.0nF, and C3 = 30.0 nF.

V

C2

C3

C1

Figure 26.10: Problem 6.

Solution (Erratum: The units should be nF, not µF.)

https://youtu.be/bW6eIBc4Va4
https://youtu.be/bM89qR9LXuc
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Chapter 27

Current and resistance

We have learned that positive charges tend to move from a point of higher electrical potential to a point of lower
electrical potential, and negative charges tend to do the opposite. This basic idea is at the heart of electrical
circuits, which involves flow of electric charges. A traditional battery is a device that provides a (constant)
potential difference, by moving charges against their natural tendency. The three basic electrical components
will will discuss are: capacitor, resistor, and inductor.

27.1 Current

Flow of electric charges (in a conducting wire) is described by current,

I =
dq

dt
. (27.1)

It is measured in units of Ampère=Coulomb/second. It is expressed in terms of the number density of charge
carriers n, area of crosssection of the wire A, and drift velocity (speed of flow) vd, as

I = neAvd. (27.2)

Lecture-Example 27.1: (Drift velocity)
Estimate the drift velocity in typical metals. Let us consider a current of I = 1A passing through a copper
wire with area of crosssection A = πr2 = π(1mm)2 ∼ 3 × 10−6m2. Since Copper has one free electron per
atom, density of 8.9 g/cm3, and atomic weight of 63.5 g/mole, we estimate n = 9× 1028 atoms/m3. (Avagadro’s
number is 6× 1023 atoms/mole.) (Answer: vd = 2× 10−5m/s.)

• How much time does it take for an individual electron to begin from the light switch and reach the bulb
that is connected by a 2m copper wire? (Answer: 28 hours.)

• To put on the light switch it is the flow that is relevant, very much like water arriving at the faucet
instantly.

27.2 Resistance

Resistance in a wire is the opposition to the flow of charges. For standard materials it is proportional to the
length of wire l, inversely proportional to area of crosssection A, in addition to it depending on the material
specific property, the resistivity ρ. Together, we have

R =
ρl

A
. (27.3)

447
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It is measured in units of Ohms=Volt/Ampère.

27.3 Ohm’s law

The current I flowing through a resistor R is directly proportional to the potential difference across the resistor,
for many materials. This is the statement of Ohm’s law,

V = IR. (27.4)

27.4 Power dissipated in a resistor

The power dissipated in a resistor is given by

P = IV =
V 2

R
= I2R. (27.5)

Lecture-Example 27.2:
The average cost of electricity in the United States, for residential users, is about 0.15USD/kWh (15 cents per
kiloWatt-hour). At this rate your electricity bill for a month came out to be 50.00USD. How much electric
energy (in Joules) did you use in the month? (Answer: 1.2× 109 J)



Chapter 28

Direct-current circuits

28.1 Resistors in series and parallel

A resistor when connected to a battery leads to a flow of current. The current I is decided by the resistance R
and potential difference V across the resistor,

I =
V

R
. (28.1)

Lecture-Example 28.1:
A resistor R = 500Ω is connected across a 10.0V battery. Determine the current in the circuit. (Answer:
20mA.)

Resistors in series

Consider two resistors in series as described in Figure 28.1. Since the potential difference across the battery is
distributed across the two resistors we deduce that

V = V1 + V2. (28.2)

The current flowing both the resistors is the same,

I1 = I2, (28.3)

because the channel for flow does not bifurcate. An equivalent resistor Req shown on the right side in Figure 28.1
is defined as a resistor that will pull the same amount of current from the battery. Thus, using V1 = I1R1,
V2 = I2R2, and V = IeqReq, in Eq. (28.2), we learn that

Req = R1 +R2. (28.4)

We can further deduce that
V1

V2

=
R1

R2

, (28.5)

which turns out to be handy in the analysis of more complicated configurations.

Lecture-Example 28.2: (Resistors in series)
A potential difference V = 10.0V is applied across a resistor arrangement with two resistances connected in
series, R1 = 100.0Ω and R2 = 200.0Ω.
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V

R1

R2

V Req

Figure 28.1: Resistors in series.

• Find the equivalent resistance. (Answer: Req = 300.0Ω.)

• Find the currents I1 and I2 flowing through the resistors. (Answer: I1 = I2 = 33.3mA.)

• Find the voltages V1 and V2 across each of the resistors. (Answer: V1 = 3.33V and V2 = 6.67V.)

• Find the power P1 and P2 dissipated in each of the resistors. (Answer: P1 = 111mW and P2 = 222mW.)

Resistors in parallel

Consider two resistors in parallel as described in Figure 28.2. The potential difference across each resistor is
identical,

V = V1 = V2. (28.6)

The total current I that flows out of the battery distributes between the two resistors,

I = I1 + I2. (28.7)

An equivalent resistor Req shown on the right side in Figure 28.2 is defined as a resistor that will pull the same
amount of current from the battery. Thus, using I1 = V1/R1, I2 = V2/R2, and I = V/Req, in Eq. (28.7), we
learn that

1

Req

=
1

R1

+
1

R2

. (28.8)

We can further deduce that
I1
I2

=
R2

R1

, (28.9)

which turns out to be handy in the analysis of more complicated configurations.

V R1 R2 V Req

Figure 28.2: Resistors in parallel.

Lecture-Example 28.3: (Resistors in parallel)
A potential difference V = 10.0V is applied across a resistor arrangement with two resistances connected in
parallel, R1 = 100.0Ω and R2 = 200.0Ω.
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• Find the equivalent resistance. (Answer: Req = 66.7Ω.)

• Find the voltages V1 and V2 across each of the resistors. (Answer: V1 = V2 = 10.0V.)

• Find the currents I1 and I2 flowing through each of the resistors. (Answer: I1 = 100mA and I2 = 50mA.)

• Find the power P1 and P2 dissipated in each of the resistors. (Answer: P1 = 1.00W and P2 = 0.500W.)

28.2 Kirchhoff’s circuit laws

Kirchhoff’s circuit laws are restatements of the the law of conservation of charge and the law of conservation of
energy.

Kirchhoff’s junction rule

Kirchhoff’s junction rule states that at a junction in a circuit the sum of currents flowing into the junction is
equal to the sum of currents flowing out of the junction. That is,

I1 + I2 + . . . = 0. (28.10)

Since currents are rate of change of charges, Ii = dQi/dt, we have

Q1 +Q2 + . . . = constant, (28.11)

which is the statement of conservation of charge.

Kirchhoff’s loop rule

Kirchhoff’s loop rule states that the sum of voltage drops around a closed loop in a circuit is zero. This is a
consequence of Eq. (25.5). Since potential difference (voltage drops) is the change in energy per unit charge this
is a restatement of conservation of energy.

Lecture-Example 28.4:
Determine the current in the circuit in Figure 28.3. Let R1 = 100Ω and R2 = 200Ω.

V1

R1

R2

V2

I

I

a b

cd

Figure 28.3: Lecture-Example 28.4
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• Using Kirchhoff’s law for the loop dabcd we have

+V1 − IR1 − V2 − IR2 = 0, (28.12)

which leads to

I =
V1 − V2

R1 +R2

. (28.13)

Evaluate the current for V1 = 10V and V2 = 20V. (Answer: I = −33.3mA.)

• Evaluate the current for the case V1 ≫ V2 with V1 = 10V. (Answer: I = 33.3mA.) Evaluate the current
for the case V1 ≪ V2 with V2 = 10V. (Answer: I = −33.3mA.) Evaluate the current for the case V1 = V2.
(Answer: I = 0. Because there is no potential difference between point a and b.)

Lecture-Example 28.5:
Reanalyze the case of two resistors in parallel using Kirchhoff’s laws.

Lecture-Example 28.6:
Consider the circuit in Figure 28.4. Determine the currents in each of the resistors.

V1

R1 R2

V2R3

I1 I2

I3

a b c

def

Figure 28.4: Lecture-Example 28.6

• Using Kirchhoff’s junction rule at the junction b we have

I1 + I2 = I3. (28.14)

Using Kirchhoff’s loop rule for the loop fabef we have

+V1 − I1R1 − I3R3 = 0. (28.15)

Using Kirchhoff’s loop rule for the loop bcdeb we have

+I2R2 − V2 + I3R3 = 0. (28.16)

This leads to

I1 =
(R2 +R3)V1 −R3V2

(R1 +R3)(R2 +R3)−R2
3

, (28.17a)

I2 =
(R1 +R3)V2 −R3V1

(R1 +R3)(R2 +R3)−R2
3

. (28.17b)

For R1 = 100Ω, R2 = 200Ω, R3 = 300Ω, V1 = 10V, and V2 = 20V, we find I1 = −9.09mA, I2 = 45.5mA,
and I3 = 36.4mA.
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• Under what condition is the current I1 in resistor R1 zero? (Answer: (R2 +R3)V1 = R3V2.) Under what
condition is the current I2 in resistor R2 zero? (Answer: (R1 +R3)V2 = R3V1.) Under what condition is
the current I3 in resistor R3 zero? (Answer: R1V2 + R2V1 = 0, which is not possible for positive V1 and
V2.)

Lecture-Example 28.7:
Consider the circuit in Figure 28.5. Determine the currents in each of the resistors. Let R1 = 100Ω, R2 = 200Ω,
V1 = 10V, and V2 = 20V.

V1

R1 R2

V2

Figure 28.5: Lecture-Example 28.7

Lecture-Example 28.8: (Wheatstone bridge)
Consider the circuit in Figure 28.6. Show that the condition for no current flow through R5 is

R1

R2

=
R3

R4

. (28.18)

V1

R1

R2

R3

R4

R5

Figure 28.6: Lecture-Example 28.8

28.3 RC circuit

A resistor and capacitor in series constitutes a RC circuit. With a battery the circuit charges the capacitor and
without the battery it discharges the capacitor.
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V

R

C

R

C

Figure 28.7: RC circuit: Charging and discharging of a capacitor.

Charging a capacitor

A resistor and a capacitor in series with a battery is governed by the equation, using Kirchhoff’s law,

V − IR− Q

C
= 0. (28.19)

Using I = dQ/dt we can solve this differential equation with the initial condition Q(0) = 0 to yield

Q(t) = CV
[

1− e−
t

RC

]

. (28.20)

Thus, it takes infinite time to charge the capacitor to its maximum capacity, Q(∞) = CV . Nevertheless, the
rate at which the capacitor is charged is governed by τ = RC, which is called the time constant of the circuit.

t

Q(t)

τ

CV

Figure 28.8: Charging of a capacitor

Lecture-Example 28.9: (Time constant)
Show that the amount of charge on the capacitor at time t = τ = RC, during the process of charging of a
capacitor is

Q(τ) = CV

(

1− 1

e

)

∼ 0.632CV. (28.21)

• Evaluate the time constant τ for the case R = 1.0MΩ and C = 1.0 nF. (Answer: τ = 1.0ms.)



28.4. PROBLEMS 455

Discharging a capacitor

A resistor and a capacitor in series without a battery is governed by the equation, using Kirchhoff’s law,

−IR− Q

C
= 0. (28.22)

Using I = dQ/dt we can solve this differential equation with the initial condition Q(0) = Q0 to yield

Q(t) = Q0e
− t

RC . (28.23)

Thus, it takes infinite time to discharge the capacitor completely. The rate at which the capacitor is discharged
is again governed by the time constant τ = RC.

t

Q(t)

τ

Q0

Figure 28.9: Discharging of a capacitor

Lecture-Example 28.10: (Time constant)
Show that the amount of charge on the capacitor at time t = τ = RC, during the process of discharging of a
capacitor is

Q(τ) = Q0

1

e
∼ 0.368Q0. (28.24)

28.4 Problems

28.4.1 Conceptual questions

1. (5 points.) Watch the following YouTube video by Higgsino Physics,

https://youtu.be/h6FYs_AUCsQ,

on superconductors. Ohm’s law is applicable for normal conductors and superconductors are instead
described by London equation. What is the resistance of a superconductor?

2. (5 points.) Direct Current (DC) versus Alternating Current (AC), what is the difference?

3. (5 points.) Watch the following YouTube video created by students in MIT,

https://youtu.be/-G-dySnSSG4,

https://youtu.be/h6FYs_AUCsQ
https://youtu.be/-G-dySnSSG4
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on Wheatstone bridge. It illustrates how measuring differences in a quantity can reduce the error in a
measurement. The Wheatstone bridge and its extended version, the Kelvin bridge, is especially useful for
measuring small resitances accurately. Imagine situations where you would employ a Wheatstone bridge.

4. (5 points.) The electric potentials at the two ends of a 1.5 kΩ resistor in a circuit is measured to be 6.0V
and 1.5V. Determine the current passing through the resistor.

5. (5 points.) A zero-watt bulb consumes about 12watts of power. In early days this was too low power
and it came to be known as zero-watt bulb. How much energy (in Joules) is consumed by a zero-watt
bulb in one year if it is left on continuously.

28.4.2 Problems based on lectures

1. (10 points.) Estimate the drift velocity of conduction electrons in a copper wire of radius 1.0mm using

I = neAvd. (28.25)

Copper has one free electron per atom available for conduction. For reference copper wire has 9 ×
1028 atoms/m3. Use I = 1.0A. How much time (in hours) does it take for an individual electron to begin
from the light switch to the bulb that is connected by a 2.0m long copper wire?

Solution

2. (10 points.) Watt is the unit of power. Watt-hour is a unit of energy. How much is kWh (kilo Watt-hour)
in Joules? The average cost of electricity in the United States, for residential users, is about 0.15USD/kWh
(15 cents per kiloWatt-hour). At this rate your electricity bill for a month came out to be 50.00USD.
How much electric energy (in Joules) did you use in the month?

Solution

3. (10 points.) Resistance is inversely proportional to the area of crosssection A and proportional to the
length l, such that

R =
ρl

A
, (28.26)

where ρ is the resistivity of the material. A cylindrical copper rod has resistance R. It is reformed to
thrice its original length with no change of volume. What is its new resistance in terms of the original
resistance R?

Solution

4. (10 points.) Figure 28.10 shows three resistors connected in parallel to a battery. The battery has a
voltage of V = 10.0V, and the resistors have equal resistances of R = 300.0Ω.

(a) Determine the equivalent resistance across the battery.

(b) Determine the voltage across each of the resistor.

(c) Determine the current passing through each resistor.

(d) Determine the power consumed by each resistor.

Solution

5. (10 points.) Consider the circuit in Figure 28.11 with V1 = 10V, V2 = 20V, R1 = 10Ω, R2 = 20Ω. For
what resistance R3 is the current in R1 zero?

Solution

6. (10 points.) Consider the circuit in Figure 28.12 with V1 = 10.0V, V2 = 20.0V, R1 = 10.0Ω, R2 = 20.0Ω,
R3 = 30.0Ω.

https://youtu.be/BcG85gc-Sj8
https://youtu.be/aaaxOvZqLis
https://youtu.be/pL83kTeSqNI
https://youtu.be/VZkp3_NXCIc
https://youtu.be/CgcgHqx4gFI
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R R RV

Figure 28.10: Problem 4

R1 R2

R3V1 V2

Figure 28.11: Problem 5

(a) Find the currents i1, i2, and i3 (with directions) through each of the resistors.

(b) Find the potential differences VR1, VR2, and VR3 across each of the resistors.

(c) Find the power P1, P2, and P3 lost in each of the resistors.

R1 R2

R3V1 V2

Figure 28.12: Problem 6

Solution

7. (10 points.) Consider the process of charging the capacitor C in Figure 7.

(a) Using Kirchhoff’s law, write down the (differential) equation relating the current I in the circuit and
the charge Q on the capacitor.

https://youtu.be/bWJ3DhVwc4M
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V

R

C

Figure 28.13: Problem 7

(b) The solution to the equation, in Question (8a), for the initial condition Q(0) = 0 is given by

Q(t) = CV
[

1− e−
t

RC

]

. (28.27)

What is the maximum charge the capacitor attains? How much time does it take to charge the
capacitor to this maximum value? How much time does it take to charge the capacitor to half of the
maximum value? Given C = 10.0µF, R = 30.0 kΩ, and V = 10.0V.

Solution

8. (10 points.) Consider the process of discharging the capacitor C through a resistor R. Refer Figure 28.14.

R

C

Figure 28.14: Problem 8

(a) Using Kirchhoff’s law, write down the (differential) equation relating the current I in the circuit and
the charge Q on the capacitor.

(b) The solution to the equation in Question (8a) for the initial condition Q(0) = Q0 is given by

Q(t) = Q0e
− t

RC . (28.28)

How much time does it take to discharge the capacitor completely? How much time does it take
to discharge the capacitor to half of the maximum value? Given C = 10.0µF, R = 30.0 kΩ, and
Q0 = 150µC.

https://youtu.be/hXaS3IyfLyk


Chapter 29

Magnetic force

29.1 Magnetic field

The concepts introduced in electrostatics can be summarized in the following symbolic form:

Charge q1 → Electric field (~E1) → Charge q2 feels a force ~F21 = q2~E1

That is, a charge q1 creates an electric field ~E1 which exerts a force ~F21 on another charge q2. A moving charge,
in addition to the above, leads to a new phenomenon. A moving charge creates a magnetic field which exerts a
force on another moving charge. This is summarized in the form:

Moving charge q1~v1 → Magnetic field (~B1) → Moving charge q2~v2 feels a force ~F21 = q2~v2 × ~B1

Thus, a charge q moving with velocity ~v, represented by

q~v (29.1)

or the corresponding current due to the movement of the charge, is a source of magnetic field. A manifestation
of this phenomena at the microscopic level is seen in the interaction of two magnets, where the magnetic field
due to one magnet exerts a force on the second magnet.

The Magnetic field is measured in units of Tesla=N·s/C·m. The common magnetic fields we come across is
listed in Table 29.1.

29.2 Vector product

Vector product (or the cross product) of two vectors

~A = Ax î+Ay ĵ+Az k̂, (29.2a)

~B = Bx î+By ĵ+Bz k̂, (29.2b)

108T magnetic field of a neutron star
102T strength of a laboratory magnet
101T medical MRI
100T a neodymium magnet
10−3T a refrigerator magnet
10−4T strength on surface of Earth
10−12T human brain

Table 29.1: Orders of magnitude (magnetic field)

459
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is given by

~C = ~A× ~B = (AyBz −AzBy) î− (AxBz −AzBx) ĵ+ (AxBy −AyBx) k̂ (29.3a)

= AB sin θ n̂ (29.3b)

where θ is the angle between the two vectors. The vector product measures the area associated with the two
vectors. The direction of the vector product ~C is given by the right-hand rule. The right-hand rule is a
mnemonic that associates the thumb to the vector ~A, the fingers to the vector ~B, such that the vector ~C is in
the direction facing the palm of the right hand.

In discussions concerning three dimensions we often have quantities pointing in and out of a plane. We shall
use the notation

⊙

to represent a direction coming out of the plane, and
⊗

to represent a direction going into
the plane. As a mnemonic one associates the dot with the tip of an arrow coming out of the page and the cross
with the feathers of an arrow going into the page.

29.3 Magnetic force

The force on a charge q moving with velocity ~v in a magnetic field ~B is symbolically given by

~F = q~v × ~B. (29.4)

The magnitude and direction of the magnetic force ~F is given by the right-hand rule for vector product. The
right-hand rule applies to a positive charge. For a negative charge the direction of force is flipped.

Lecture-Example 29.1:
A proton and an electron enters a region containing a magnetic field going into the page, ~B = −2.0 ẑT. Let the
velocity of both the particles while they enter the region be to the right, ~v = 3.0× 105 x̂m/s.

• Determine the magnitude of the magnetic force on the proton and the electron.

• Determine the direction of the magnetic force on the proton and the electron, using the right-hand rule.

• Determine the corresponding accelerations experienced the proton and the electron.

29.4 Motion of a charged particle in a uniform magnetic field

Using Newton’s law, ~F = m~a, we have the equation of motion for a charged particle in a uniform magnetic field
to be

d~v

dt
=

q

m
~v × ~B. (29.5)

In a uniform magnetic ~B, if the velocity of a particle ~v is perpendicular to the direction of the magnetic
field, the direction of the acceleration of the particle is always perpendicular to the velocity of the particle
and to the magnetic field. Further, for the case of uniform magnetic field the magnitude of the acceleration
remains constant. These are the requirements for a particle to move in a circle with uniform speed. Thus, using
Newton’s law, F = ma, for circular motion, we have

qvB = m
v2

R
, (29.6)

where R is the radius of the circle and ω is the angular frequency of the rotational motion, such that where
v = ωR. We learn that the particle particle goes around the magnetic field at an angular frequency, the cyclotron
frequency, given by

ω =
q

m
B, (29.7)
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which depends on the charge to mass ratio of the particle.
For the more general case of the velocity not being perpendicular to the magnetic field the particle drifts in

the direction of the magnetic field while moving in circles, the path covered being helical.

Lecture-Example 29.2: (Circular motion)
Motion of a charged particle of mass m and charge q in a uniform magnetic field B is governed by

m
dv

dt
= q v ×B. (29.8)

Choose B along the z-axis and solve this vector differential equation to determine the position x(t) and velocity
v(t) of the particle as a function of time, for initial conditions

x(0) = 0 î+ 0 ĵ+ 0 k̂, (29.9a)

v(0) = 0 î+ v0 ĵ+ 0 k̂. (29.9b)

Verify that the solution describes a circle of radius R with center at position R î.

Lecture-Example 29.3: (Northern lights)
A proton and an electron are moving in circles around a magnetic field of B = 1.0× 10−6T.

• Determine the cyclotron frequency for the proton and the electron.
(Answer: ωp = 96 rad/s, ωe = 1.8× 105 rad/s.)

• If the particles are moving with uniform speed v = 2.0 × 106m/s, determine the radius of the circles
describing their path. (Answer: Rp = 21km, Re = 11m.)

• Aurora Borealis (northern lights) and Aurora Australis (southern lights) is a spectacular display of light
shimmering across the night sky, often observed aroundmagnetic poles of the Earth, when charged particles
emitted by the Sun and guided along by the magnetic field of the Earth enter the atmosphere. Check out
an animation of this phenomenon as seen from space, released by NASA Earth Observatory,

Aurora Australis on 2005 Sep 11,

which to an observer on Earth would appear as a curtain of shimmering light.

Lecture-Example 29.4: (Bubble chamber)
A charged particle in a magnetic field goes in circles (or in helices). Recall that positron is the antiparticle
of electron. Describe the motion of a positron in a magnetic field, and contrast it to that of an electron in a
magnetic field. How will the ionization track of electron and positron differ in a bubble chamber? For example,
refer to the picture at 34:21 minute in the lecture by Frank Close, part of

Christmas Lectures, 1993.

Lecture-Example 29.5: (Velocity selector)
The electric field and the magnetic field both deflect charged particles due to the respective forces. In a velocity
selector these forces are exactly balanced for particles moving with a particular velocity which go through
undeviated. Show that the velocity of a velocity selector is determined by

v =
E

B
. (29.10)

https://en.wikipedia.org/wiki/File:Aurora_Australis.gif
https://www.rigb.org/christmas-lectures/watch/1993/the-cosmic-onion/invaders-from-outer-space
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• Determine the velocity selected by a velocity selector consisting of an electric field of E = 3.0× 105N/C
and a magnetic field of B = 1.5T. (Answer: v = 2.0× 105 m/s.)

v
×

×

×

×

×

×⊙ x

y

z

v > E
B

v = E
B

v < E
B

Figure 29.1: Lecture-Example 29.5

Lecture-Example 29.6: (Applications)

• Mass spectrometer

• Hall effect

• Cyclotron

• Cathode ray tube

29.5 Magnetic force on a current carrying wire

Using the fact that a current carrying wire involves the motion of positive positive charges we realize that the
wire will experience a magnetic force in a magnetic field. Identifying the relation

dq ~v = dq
d~l

dt
= Id~l, (29.11)

where I is the current in the wire, we derive the force on a current carrying wire to be given by the line integral

~F =

∫

C

Id~l× ~B, (29.12)

C being the curve that specifies the shape of the wire. The direction of the force is given using the right-hand
rule with the thumb in the direction of current.

Lecture-Example 29.7:
A loop in the shape of a right triangle, carrying a current I, is placed in a magnetic field. (Choose ẑ to be out
of the page.)
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x

y I

1

2

3
~B

θ

Figure 29.2: Lecture-Example 29.7

• The force on side 1 is given by
~F1 = IBx sin 180◦ ẑ = 0 ẑ. (29.13)

The force on side 2 is given by
~F2 = −IBy sin 90◦ ẑ = −IBy ẑ. (29.14)

The force on side 3 is given by, using sin θ = y/
√

x2 + y2,

~F3 = IB
√

x2 + y2 sin θ ẑ = IBy ẑ. (29.15)

• Show that the total force on the triangle is zero.

Lecture-Example 29.8:
A loop in the shape of a right triangle, carrying a current I, is placed in a magnetic field. (Choose ẑ to be out
of the page.)

×
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×
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×

×

×

×

×
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y I

1

2

3
~B

θ

Figure 29.3: Lecture-Example 29.8

• The force on side 1 is given by
~F1 = −IBx sin 90◦ ŷ = −IBx ŷ. (29.16)

The force on side 2 is given by
~F2 = −IBy sin 90◦ x̂ = −IBy x̂. (29.17)

The force on side 3 is given by, using sin θ = y/
√

x2 + y2,

~F3 = IB
√

x2 + y2 sin θ x̂+ IB
√

x2 + y2 cos θ ŷ = IBy x̂+ IBx ŷ. (29.18)

• Show that the total force on the triangle is zero.
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Figure 29.4: Lecture-Example 29.9

Lecture-Example 29.9:
A loop in the shape of a semi circle of radius R, carrying a current I, is placed in a magnetic field. (Choose ẑ
to be out of the page.)

• Show that the force on side 1 is given by
~F1 = 2IRB ŷ. (29.19)

Show that the force on side 2 is given by

~F2 = −2IRB ŷ. (29.20)

• Show that the total force on the loop is zero.

29.6 Magnetic moment of a current carrying loop

The magnetic moment ~µ associated with a (planar) current carrying loop of wire is

~µ = NIA n̂, (29.21)

where I is the current in the wire, N is the number of turns in the loop, and A is the area of the loop. The
direction of the magnetic moment, represented by n̂, is perpendicular to the plane constituting the loop and is
given by the right-hand rule. An arbitrary shaped loop that is not planar can be constructed out of infinitely
small planar loops.

A magnet is interpreted to have a North and South pole, in the Gilbert model. In the Ampère model
the magnetic field due to a magnet is due to microscopic current loops. The magnetic moment of a magnet
characterizes the strength of a magnetic field produced by the magnet.

Force

The total force on a current carrying loop in a uniform magnetic field is zero, that is,

∮

Id~l× ~B = 0. (29.22)

Torque

The magnitude of the torque on a current carrying loop, or just a magnetic moment ~µ, in a uniform magnetic
field ~B, is

~τ = ~µ× ~B. (29.23)

The direction is such that the magnetic moment tries to align with the magnetic field.
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Lecture-Example 29.10:
A loop in the shape of a rectangle, carrying a current I, is placed in a magnetic field. Let the plane of the loop
be perpendicular to the magnetic field ~B = −B ẑ.
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Figure 29.5: Lecture-Example 29.10

• The force on side 1 is given by

~F1 = −ŷ ILxB sin 90◦ = −ŷ ILxB. (29.24)

The force on side 2 is given by

~F2 = −x̂ ILyB sin 90◦ = −x̂ ILyB. (29.25)

The force on side 3 is given by

~F3 = +ŷ ILxB sin 90◦ = +ŷ ILxB. (29.26)

The force on side 4 is given by

~F4 = +x̂ ILyB sin 90◦ = +x̂ ILyB. (29.27)

• Show that the total force on the rectangle is zero.

• Show that the total torque on the rectangle is zero.

Lecture-Example 29.11:
A loop in the shape of a rectangle, carrying a current I, is placed in a magnetic field. Let the normal to the
plane of the loop make an angle θ with respect to the magnetic field ~B = −B ẑ.

• The force on side 1 is given by

~F1 = −ŷ ILxB sin 90◦ = −ŷ ILxB. (29.28)

The force on side 2 is given by

~F2 = −x̂ ILyB sin(90◦ + θ) = −x̂ ILyB cos θ. (29.29)

The force on side 3 is given by

~F3 = +ŷ ILxB sin 90◦ = +ŷ ILxB. (29.30)

The force on side 4 is given by

~F4 = +x̂ ILyB sin(90◦ − θ) = +x̂ ILyB cos θ. (29.31)
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Figure 29.6: Lecture-Example 29.11

• Show that the total force on the rectangle is zero.

• Show that the total torque on the rectangle is

τ =
Ly

2
F3 sin θ +

Ly

2
F1 sin θ = µB sin θ. (29.32)

29.7 Problems

29.7.1 Conceptual questions

1. (5 points.) What are the dimensions (not to be confused with units) of the ratio of electric field to
magnetic field,

E

B
? (29.33)

2. (5 points.) A charged particle initially moving with constant speed v enters a region of magnetic field
B pointing into the page. It is deflected as shown in Fig. 29.7. What curve characterizes the path of the
deflected particle?
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v

B

Figure 29.7: Problem 2

3. (5 points.) Aurora Borealis (northern lights) and Aurora Australis (southern lights) is a spectacular
display of light shimmering across the night sky, often observed around magnetic poles of the Earth,
when charged particles emitted by the Sun and guided along by the magnetic field of the Earth enter the
atmosphere. Check out an animation of this phenomenon as seen from space, released by NASA Earth
Observatory,

Aurora Australis on 2005 Sep 11,

https://en.wikipedia.org/wiki/File:Aurora_Australis.gif
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which to an observer on Earth would appear as a curtain of shimmering light. Where is the magnetic
north pole?

4. (5 points.) Plate tectonics explains the spreading of sea floor and periodic magnetic reversals on the sea
floor. The following YouTube videos

https://youtu.be/JJEZ3Vizdww

https://youtu.be/BCzCmldiaWQ

explains this. What is the implication of the observation that the magntic reversals on the sea floor have
distinct boundaries and are not varying continuously?

5. (5 points.) A charged particle in a magnetic field goes in circles (or in helices). Recall that positron is
the antiparticle of electron. Describe the motion of a positron in a magnetic field, and contrast it to that
of an electron in a magnetic field. How will the ionization track of electron and positron differ in a bubble
chamber? For example, refer to the picture at 34:21 minute in the lecture by Frank Close, part of

Christmas Lectures, 1993.

6. (5 points.) Briefly describe Hall effect.

29.7.2 Problems based on lectures

1. (10 points.) A rod of mass m = 50.0mg rests on two parallel rails (see Figure 29.8) that are a distance
l = 5.0 cm apart. The rod carries a current I = 1.5A in the direction shown and slides on the rails without
friction. A uniform magnetic field B = 1.0T is directed perpendicular to the rod and the rails. Neglect
gravity. Determine the magnitude and direction of acceleration of rod.

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

I l

B

Figure 29.8: Problem 1

2. (10 points.) An electron that has velocity ~v = (2.1 × 106m/s) î + (2.7 × 106m/s) ĵ moves through a

magnetic field ~B = (0.03T) î− (0.15T) ĵ. Find the force on the electron.

Solution

3. (10 points.) Motion of a charged particle of mass m and charge q in a uniform magnetic field B is
governed by the Lorentz equation

m
dv

dt
= q v ×B. (29.34)

https://youtu.be/JJEZ3Vizdww
https://youtu.be/BCzCmldiaWQ
https://www.rigb.org/christmas-lectures/watch/1993/the-cosmic-onion/invaders-from-outer-space
https://youtu.be/egoHtoP6uzo
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For the case when B is pointing along the z-axis, show that the above vector equation corresponds to the
following three coupled differential equations,

dvx
dt

= ωvy, (29.35a)

dvy
dt

= −ωvx, (29.35b)

dvz
dt

= 0, (29.35c)

for the components of velocity of the particle. (Rest of this problem need not be submitted for assessment.)
These differential equations can be solved to determine the position x(t) and velocity v(t) of the particle
as a function of time. In particular, for initial conditions,

x(0) = 0 î+ 0 ĵ+ 0 k̂, (29.36a)

v(0) = 0 î+ v0 ĵ+ 0 k̂, (29.36b)

it can be shown that the solution describes a circle of radius R = mv0/(qB) centered at position R î.

Solution

4. (10 points.) A proton and an electron enters a region containing a magnetic field going into the page,
~B = −2.0 k̂T. Let the velocity of both the particles while they enter the region be to the right, ~v =
3.0× 105 îm/s.

(a) Determine the magnitude of the magnetic force on the proton and the electron.

(b) Determine the direction of the magnetic force on the proton and the electron, using the right-hand
rule.

(c) Determine the corresponding accelerations experienced by the proton and the electron.

(d) Determine the cyclotron frequency of the proton and the electron.

(e) Determine the radius of the circle described by the paths of the proton and the electron.

Solution

5. (10 points.) A proton and an electron enter a region containing a uniform magnetic field. Determine
the ratio of the cyclotron frequency of the electron to the cylcotron frequency of the proton.

6. (10 points.) The electric field and the magnetic field both deflect charged particles due to the respective
forces. In a velocity selector these forces are exactly balanced for particles moving with a particular
velocity which go through undeviated. See Figure 29.9. Determine the magnitude and direction of the
velocity selected by a velocity selector consisting of an electric field of E = −3.0×103 ĵN/C and a magnetic

field of B = −1.5 k̂T.

Solution

7. (10 points.) You are driving in your car in the direction of positive x-axis with speed 31m/s (∼
70miles/hour). The magnetic field due to Earth in this region is in the xz-plane with its vertically
downward component (along negative z-axis) having a magnitude of 50µT. The car being made of metal
has charges that are free to move. These charges feel a magnetic force in the presence of the magnetic
field and drift towards the sides of the car. Assuming the width of the car to be 1.0m, determine the Hall
voltage built up across the car.

Solution

8. (10 points.) A loop in the shape of a right triangle of sides a = 3.0 cm and b = 2.0 cm, carrying a current
I = 2.0A, is placed in a magnetic field 0.30T going into the page. See Figure 29.10. Determine the
magnitude and direction of the force on side 3 of the triangle.

Solution

https://youtu.be/dcVYjWiSJhc
https://youtu.be/KQlQA_Xf6Yc
https://youtu.be/1ZixLpZWoFk
https://youtu.be/dHPbMNz9lJU
https://youtu.be/_6bFMt5rytY


29.7. PROBLEMS 469

v
×

×

×

×

×

×⊙ x

y

z

v > E
B

v = E
B

v < E
B

Figure 29.9: Problem 6
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Figure 29.10: Problem 8.

9. (10 points.) A loop in the shape of a right triangle of sides a = 3.0 cm and b = 2.0 cm, carrying a current
I = 2.0A, is placed in a magnetic field 0.30T as shown in Figure 29.11. Determine the magnitude and
direction of the force on side 3 of the triangle.

a

b I
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3
~B

θ

⊙ x

y

z

Figure 29.11: Probelm 9

10. (10 points.) A loop in the shape of a semi circle of radius R, carrying a current I, is placed in a magnetic
field B. See Figure 29.12. Determine the expression for magnitude and direction of the total force acting
on the semi-circular part of the wire.

Solution

11. (10 points.) A current of 16mA is maintained in a single circular loop of 1.20m2 area. A magnetic field
of 0.60T is directed parallel to the plane of the loop.

(a) Calculate the magnetic dipole moment of the loop.

(b) What is the magnitude of the torque exerted by the magnetic field on the loop?

https://youtu.be/8TBFrNe_AWo
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Figure 29.12: Problem 10.

Solution

https://youtu.be/uvViaSSnhGY


Chapter 30

Magnetic field

30.1 Biot-Savart law

The magnetic field d~B generated by a current I through a line element d~l,

Id~l, (30.1)

is given by the Biot-Savart law,

d~B =
µ0

4π

Id~l× r̂

r2
. (30.2)

The constant µ0 is the permeability of vacuum,

µ0 = 4π × 10−7 T·m
A

, (30.3)

that describes the magnetic property of vacuum.

Lecture-Example 30.1: (Speed of light)
Evaluate

c =
1√
µ0ε0

. (30.4)

Answer: c = 2.998× 108m/s, up to four significant digits. This is the speed of light!

Lecture-Example 30.2: (A straight segment of wire)
How that the magnetic field due to a straight segment of wire at a distance r from the wire is given by

~B = φ̂
µ0I

4πr
(sin θ1 + sin θ2), (30.5)

where the angles θ1 and θ2 specifies the observation point with respect to the ends of the wire. See Figure 30.1.
The direction of the magnetic field φ̂ is given by the right-hand rule and is tangential to circles around the wire.

• As a special case, we have the magnetic field due to an infinitely long wire, θ1 = θ2 = π/2, as

~B = φ̂
µ0I

2πr
. (30.6)

471
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I

r
θ2

θ1
⊗

Figure 30.1: A straight segment of wire.

Lecture-Example 30.3: (A circular segment of wire)
Show that the magnetic field due a circular segment of wire, at the center of circle, is given by

~B = ẑ
µ0I

4πR
θ, (30.7)

where angle θ is the angular measure of the segment. See Figure 30.2. The direction of the magnetic field n̂
is given by the right-hand rule and is perpendicular to the plane containing the segment of wire. As a special

I

R

θ ⊗ ~B

Figure 30.2: A straight segment of wire.

case, we have the magnetic field due to a circular loop of wire, θ = 2π, at the center of the loop, as

~B = ẑ
µ0I

2R
. (30.8)

Lecture-Example 30.4: (Magnetic field on the symmetry axis of a circular wire)
Show that the magnetic field on the symmetry axis of a circular loop of wire carrying current I is given by

~B = ẑ
µ0I

2

a2

(a2 + h2)
3
2

, (30.9)

where a is the radius of the circular loop. The direction of the magnetic field n̂ is given by the right-hand rule
and is perpendicular to the plane containing the segment of wire.

• For the case h ≪ a this leads to the expression for the magnetic field of a circular at the center of the
loop.
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• For the case a ≪ h we have
~B = ẑ

µ0

2π

µ

h3
, µ = IA, A = πa2, (30.10)

where µ is the magnetic moment of the loop, and A is the area of the loop.

Lecture-Example 30.5: (Solenoid)
A solenoid is a coil in the form of a helix. For a closely wound coil we can model a solenoid as closely packed
circular coils. Using the expression for the magnetic field due to a circular loop, show that the magnetic field
along the axis of a solenoid is given by

~B = ẑµ0In, (30.11)

where n = N/L is the number of turns per unit length. The direction of the magnetic field ẑ is given by the
right-hand rule and is perpendicular to the plane containing the segment of wire.

• In general the magnetic field due to a solenoid is given by, (which will be proved using Ampère’s law
later,)

~B =

{

ẑµ0In, inside,

0, outside.
(30.12)

Observe that a solenoid creates a uniform magnetic field inside the solenoid.

Lecture-Example 30.6: A steady current I flows through a wire shown in Fig. 30.3. Show that the magnitude
and direction of magnetic field at point P is

B =
µ0I

4πa

(

2

2
+

2

2
+

2π

2

)

(30.13)

coming out of the page.

b

P
~v

a I

Figure 30.3: Lecture-Example 30.6

• Determine the magnitude and direction of the magnetic field for I = 1.0A and a = 10.0 cm.

• Determine the magnitude and direction of the magnetic force on a proton moving with velocity v =
2.0× 106 m/s, to the right, while it is passing the point P .

Lecture-Example 30.7:
A steady current I flows through a wire shown in Fig. 30.11. Show that the magnitude and direction of magnetic
field at point P is

B =
µ0I

4πa

(

2

2
+

2

2
+

2π

4

)

(30.14)

going into the page.
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b P

a I

Figure 30.4: Lecture-Example 30.7

• Determine the magnitude and direction of the magnetic field for I = 1.0A and a = 10.0 cm.

• Determine the magnitude and direction of the magnetic force on a proton moving with velocity v =
2.0× 106 m/s, to the right, while it is passing the point P .

Lecture-Example 30.8: A steady current I flows through a wire in the shape of a square of side L, shown
in Fig. 30.12. Show that the magnitude and direction of the magnetic field at the center of the square, P , is

B =
µ0I

πL

4√
2

(30.15)

going out of the page.

b P

I

Figure 30.5: Lecture-Example 30.8

• Repeat this for an equilateral triangle, and a polygon.

Lecture-Example 30.9:
Figure 30.14 shows two current carrying wires, separated by a distance D. The directions of currents, either
going into the page or coming out of the page, are shown in the figure. Determine the point × where the
magnetic field is exactly zero.

• Answer:

x =
D

(

1 + I2
I1

) . (30.16)

Determine x if I1 = 2.0A, I2 = 6.0A, and D = 10.0 cm. (Answer: 2.5A.)
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×
I1 I2

D

x

Figure 30.6: Lecture-Example 30.9

• How does your answer change if the direction of currents in either or both the wires were changed?

Lecture-Example 30.10:
Figure 30.16 shows two current carrying wires, in a plane. The directions of currents, either going into the page
or coming out of the page, are shown in the figure. Determine the magnitude and direction of the magnetic
field at the point ×, the origin. Let I1 = 1.0A, I2 = 2.0A, x = 12 cm, and y = 8.0 cm.

××

I1

I2
x

y

Figure 30.7: Lecture-Example 30.10

• The magnetic field at the origin due to the individual wires is

~B1 =
µ0I1
2πy

î+ 0 ĵ, (30.17a)

~B2 = 0 î+
µ0I2
2πx

ĵ. (30.17b)

The total magnetic field is given as
~Btot = ~B1 + ~B2. (30.18)

Answer: ~B1 = î 2.5µT and ~B2 = ĵ 3.3µT. Magnitude |~Btot| = 4.1µT makes an angle of 53◦ counter-
clockwise with respect to x-axis.

• How does your answer change if the direction of currents in either or both the wires were changed?

30.2 Magnetic force between two parallel current carrying wires

If we have two parallel current carrying wires, each of the wires generates a magnetic field around it, which in
turn exerts a force on the other wire. For currents I1 and I2 in the wires separated by a distance r we have the
force per unit length on the wires given by

F

L
=

µ0I1I2
2πr

. (30.19)
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The direction of the force is such that the wires attract if the current are in the same direction, and vice versa.
We say, like currents attract and unlike current repel.

Lecture-Example 30.11:
Two infinitely long parallel wires, carrying currents I1 = 1.0A and I2 = 2.0A in the same direction, are
separated by a distance r = 10 cm.

• Determine the magnitude and direction of the magnetic field ~B1 generated by the current I1 at the position
of current I2. (Answer: B1 = 2.0µT.) Determine the magnitude and direction of the force exerted by the

magnetic field ~B1 on the wire with current I2. (Answer: 4.0µN.)

• How will the answer differ if the currents are in opposite directions?

Lecture-Example 30.12:
A rectangular loop of wire carrying current I2 = 2.0A is placed near an infinitely long wire carrying current
I1 = 1.0A, such that two of the sides of the rectangle are parallel to the current I1. Let the distances be
a = 5.0 cm, b = 4.0 cm, and l = 10.0 cm.

I2

I1a

l

b

1

2

3

4

Figure 30.8: Lecture-Example 30.12

• Determine the force on side ‘1’ of the loop. (Answer: 0.44µN away from the current carrying wire I1.)
Determine the force on side ‘3’ of the loop. (Answer: 0.80µN towards the current carrying wire I1.)
Further, show that the combined force on side ‘2’ and ‘4’ is zero. Determine the magnitude and direction
of the total force on the loop. (Answer: 0.36µN towards the current carrying wire I1.)

• How does your analysis change if either of the currents were reversed?

30.3 Ampère’s law

Ampère’s law states that the line integral of the magnetic field ~B along a closed path is completely determined
by the total current Ien passing through the closed path,

∮

~B · d~l = µ0Ien. (30.20)

Lecture-Example 30.13: (Magnetic field due to an infinitely long current carrying wire)



30.4. PROBLEMS 477

Using the symmetry of an infinitely long straight wire, presuming the magnetic field to be circular, derive the
magnetic field around the wire using Ampère’s law,

~B = φ̂
µ0I

2πr
. (30.21)

Lecture-Example 30.14: (Solenoid)
Using Ampère’s law show that the magnetic field due to a solenoid is given by,

~B =

{

ẑµ0In, inside,

0, outside.
(30.22)

30.4 Problems

30.4.1 Conceptual questions

1. (5 points.) The following YouTube video by New Scientist,

https://youtu.be/BREcwTXc6O4,

attempts to illustrate the idea of a magnetic monopole. It arises from the simple notion that a ‘North
pole’ could be separated from it’s ‘South pole’. What will be the SI unit of magnetic charge if it were to
exist?

2. (5 points.) Electric field E is a manifestation of change in electric potential V ,

E = −∇V. (30.23)

Is there a potential associated to the magnetic field?

3. (5 points.) Two infinitely long straight wires parallel to each other carry steady currents I in each of
them in the same direction as shown in Figure 30.9. What is the magnitude and direction of the magnetic
field at the point P midway between the wires?

b P

Figure 30.9: Problem 3

https://youtu.be/BREcwTXc6O4
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a

b
o

Figure 30.10: Problem 1

30.4.2 Problems based on lectures

1. (10 points.) The magnetic field at a distance R from a wire of infinite extent carrying a steady current
I is given by

B =
µ0

4π

2I

R
φ̂, (30.24)

where the direction of φ̂ is given by the right-hand rule. Find the magnetic field at point o in Fig. 1 in
terms of distances a and b and current I. That is, express R in terms of a and b.

Solution

2. (10 points.) A steady current I flows through a wire shown in Fig. 30.11. Determine the magnitude and
direction of magnetic field at point P in terms of I and a.

b P

a I

Figure 30.11: Problem 2

(a) Determine the magnitude and direction of the magnetic field for I = 1.0A and a = 10.0 cm.

(b) Determine the magnitude and direction of the magnetic force on a proton moving with velocity
v = 2.0× 106m/s, to the right, while it is passing the point P .

Solution

3. (10 points.) A steady current I flows through a wire in the shape of a square of side L, shown in
Fig. 30.12. Determine the magnitude and direction of the magnetic field at the center of the square, P .

Solution

4. (10 points.) A steady current I flows through a wire in the shape of an equilateral triangle of side L
shown in Fig. 30.13. Express the magnitude of the magnetic field at the center of the triangle, P , in the
form

B =
µ0

4π

I

L
a. (30.25)

https://youtu.be/jdiuo78Tw0U
https://youtu.be/yUy26XZnq1Y
https://youtu.be/elQOOodGiO4
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b P

I

Figure 30.12: Problem 3

Thus, determine the number a.

b PI

Figure 30.13: Problem 4

5. (10 points.) Figure 30.14 shows two current carrying wires, separated by a distance D. The directions
of currents, either going into the page or coming out of the page, are shown in the figure. Determine the
point × where the magnetic field is exactly zero.

×
I1 I2

D

x

Figure 30.14: Problem 5

Solution

6. (10 points.) Figure 30.16 shows two current carrying wires, in a plane. The directions of currents, either
going into the page or coming out of the page, are shown in the figure. Determine the magnitude and
direction of the magnetic field at the point ×, the origin. Let I1 = 1.0A, I2 = 2.0A, x = 12 cm, and
y = 8.0 cm.

Solution

7. (10 points.) Figure 30.16 shows two infinitely long parallel current carrying wires coming out of the
plane perpendicular to the wires. The directions of currents, either going into the page or coming out of
the page, are shown in the figure. Determine the magnitude and direction of the force per unit length
exrted by the wire carrying I2 on the wire carrying current I1. Given I1 = 1.0A, I2 = 2.0A, x = 12 cm,
and y = 8.0 cm.

8. (10 points.) A rectangular loop of wire carrying current I2 = 2.0A is placed near an infinitely long wire
carrying current I1 = 1.0A, such that two of the sides of the rectangle are parallel to the current I1. Let
the distances be a = 5.0 cm, b = 4.0 cm, and l = 10.0 cm.

(a) Determine the force on side ‘1’ of the loop.

(b) Determine the force on side ‘3’ of the loop.

https://youtu.be/ST0_xhHmvFo
https://youtu.be/9vrPVwAg24o
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××

I1

I2
x

y

Figure 30.15: Problem 6

I1

I2
x

y

Figure 30.16: Problem 7

(c) Show that the combined force on side ‘2’ and ‘4’ is zero.

(d) Determine the magnitude and direction of the total force on the loop.

Solution

9. (10 points.) Using Ampère’s law show that the magnetic field due to a solenoid carrying a current I is
given by,

~B =

{

ẑµ0In, inside the solenoid,

0, outside the solenoid,
(30.26)

where n is the number of turns per unit length.

Solution

https://youtu.be/OwV770hTQhs
https://youtu.be/p8_PgMnQoyo
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I2

I1a

l

b

1

2

3

4

Figure 30.17: Problem 8
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Chapter 31

Faraday induction

31.1 Magnetic flux

Flux associated with the magnetic field ~B across an infinitesimal area dA is defined as

dΦB = ~B · d~A. (31.1)

Flux associated with the magnetic field ~B across a surface area S is then given by

ΦB =

∫

S

~B · d~A. (31.2)

Gauss’s law for magnetism states that the magnetic flux across a closed surface is zero,

∮

S

~B · d~A = 0, (31.3)

which implies the absence of an isolated magnetic monopole, or the magnetic charge. In other words it states
that the north pole and the south pole of a bar magnet can not be separated.

Lecture-Example 31.1: A square loop of wire consisting of a single turn is perpendicular to a uniform
magnetic field. The square loop is then re-formed into a circular loop and is also perpendicular to the same
magnetic field. Determine the ratio of the flux through the square loop to the flux through the circular loop.
(Answer: π/4.)

31.2 Faraday’s law of induction

Faraday’s law of induction states that the negative rate of change of magnetic flux passing a loop of wire induces
an effective voltage in the loop, which in turn generates a current in the loop,

IR = ∆Veff = −N
dφB

dt
, (31.4)

where N is the number of loops.

Lecture-Example 31.2:
Consider a straight wire of length L = 1.0m moving with velocity v = 30.0m/s in the region of a uniform
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magnetic field B = 2.0 × 10−5T. Determine the potential difference induced between the ends of the wire.
(Answer: 0.60mV.)

Lecture-Example 31.3: (Induction due to change in area)
Figure 31.10 shows a conducting rod being pulled along horizontal, frictionless, conducting rails at a constant
speed v. A uniform magnetic field B fills the region in which the rod moves. Let l = 10 cm, v = 5.0m/s,
B = 1.2T, and R = 0.40Ω.
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Figure 31.1: Lecture-Example 31.3

• Is the magnetic flux in the loop increasing or decreasing? What is the direction of the induced current in
the loop?

• Show that the magnitude of the induced current in the loop is given by

I =
Blv

R
. (31.5)

Show that this induced current feels a magnetic force of

FB =
B2l2v

R
. (31.6)

Determine the power delivered to the resistance due to the induced current is

P =
B2l2v2

R
. (31.7)

• How does the analysis change if the direction of velocity is reversed?

Lecture-Example 31.4:
Figure 31.11 shows five snapshots of a rectangular coil being pushed across the dotted region where there is a
uniform magnetic field directed into the page. Outside of this region the magnetic field is zero.

• Determine the direction of induced current in the loop at each of the five instances in the figure.

• Determine the direction force on the loop due to the induced current in each of the five instances in the
figure.
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Figure 31.2: Lecture-Example 31.4

Lecture-Example 31.5: (Induction due to change in magnetic field)
A loop of wire having a resistance R = 100.0Ω is placed in a magnetic field whose magnitude is changing in
time as

B = B0e
− t

τ , (31.8)

described in Figure 31.3, where τ is the interpreted as the time constant of the decay in the magnetic field. The
direction of the magnetic field is normal to the plane of the loop. The loop of wire consists of 100 turns and
has an area of A = 25× 10−4m2. Let B0 = 0.20T and τ = 0.10ms.

t

B(t)

τ

B0

Figure 31.3: Lecture-Example 31.5

• Show that the induced current in the loop is given by

I =
BA

τR
. (31.9)

Lecture-Example 31.6: (A simple transformer)
Consider two coils wound on the same cylinder such that the flux through both the coils is the same, such that

dΦ1

dt
=

dΦ2

dt
. (31.10)

Thus, derive the ratio of the voltages in the two coils to be given by

V1

V2

=
N1

N2

. (31.11)
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Energy conservation requires the power in the coils to be the same, that is P1 = P2. Thus, further derive

I2
I1

=
N1

N2

. (31.12)

A device operates at V2 = 10.0V. It uses a transformer to get the required voltage when plugged into a wall
socket with voltage V1 = 120V. Determine the ratio of the turns in the two coils inside the transformer. (Answer:
N1/N2 = 12.) If the device pulls a current of 120mA, determine the current coming out of the wall socket.
(Answer: I1 = 10mA.)

Lecture-Example 31.7: (Induction due to change in orientation)
Consider the area enclosed by the loop formed in the configuration shown in Figure 31.14. The rotation described
in the figure effectively changes the area enclosed by the loop periodically.
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Figure 31.4: Lecture-Example 31.7

• For uniform angular speed of rotation ω we have θ = ωt such that

d cos θ

dt
= −ω sinωt, (31.13)

show that the induced current in the loop is given by

∆Veff = BAω sinωt. (31.14)

Determine the maximum induced voltage for B = 0.1T, radius a = 10ċm, and angular speed of rotation
of 600 revolutions per minute (ω = 20π rad/s). (Answer: 0.20V.)

• Plot the induced voltage as a function of time.

Lecture-Example 31.8: (Generator)
A generator has a square coil consisting of 500 turns. The coil rotates at 60 rad/s in a 0.20T magnetic field. If
length of one side of the coil is 10.0 cm, what is peak output of the generator? (Answer: 60V.)
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Figure 31.5: Lecture-Example 31.9

31.3 Further examples

Lecture-Example 31.9: (Kirchhoff’s law)
Consider the diagram shown in Figure 31.5 in which the free conducting rod is pulled with velocity v. Let
R1 = 100.0Ω, R2 = 200.0Ω, B = 0.20T, l = 10.0 cm, and v = 10.0m/s.

• Show that the effective voltage in the circuit (on the left) of Figure 31.5 is given by

Veff = Blv. (31.15)

In particular, observe that this could be deciphered from the rate of change of flux in either of the loops.
Thus, show that the effective circuit diagram on the right of Figure 31.5 is equivalent to the one on left.
(Answer: Veff = 0.20V.)

• Determine the currents in the two resistances. (Answer: I1 = 2.0mA, I2 = 1.0mA.)

Lecture-Example 31.10:
Consider the diagram shown in Figure 31.12. The rods are pulled with uniform speeds v1 = 10.0m/s and
v2 = 20.0m/s. Let R1 = 100.0Ω, R2 = 200.0Ω, R3 = 300.0Ω, l = 10.0 cm, B = 0.10T.
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Figure 31.6: Lecture-Example 31.10

• The effective circuit is obtained by replacing each of the rods with effective voltages V eff
1 and V eff

2 . Deter-
mine the magnitude and direction sense of these effective voltages. (Answer: V eff

1 = 0.10V such that the
positive is touching the top rail, and V eff

2 = 0.20V such the positive is touching the top rail.)
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• Determine the magnitude and direction the currents in each of the resistances. (Answer: I1 = 0.091mA
from right to left, I2 = 0.45mA from right to left, I3 = 0.36mA from top to bottom.)

Lecture-Example 31.11:
A rectangular loop of wire has an instantaneous velocity v. It is a distance y from a wire carrying current I.
See Figure 31.7.

I

v

y

l

b

Figure 31.7: Lecture-Example 31.11

• Show that the magnetic flux ΦB passing through the loop, at the given instant, is given by

ΦB =
µ0I

2π
l ln

(

1 +
a

y

)

. (31.16)

• Show that the voltage induced in the loop, at the given instant, is given by

Veff =
µ0I

2π

(

1

y
− 1

y + a

)

lv. (31.17)

Show that the magnitude of the induced current in the loop is

Iloop =
Veff

R
(31.18)

in the clockwise direction.

• Show that the magnetic force on the loop of wire, at the given instant, is given by

Floop =
v

R
l2
[

µ0I

2π

(

1

y
− 1

y + a

)]2

. (31.19)

31.4 Problems

31.4.1 Conceptual questions

1. (5 points.) The following YouTube video by Thomas Stevenson,

https://youtu.be/Y18N-hi5P1o,

explains Faraday’s law of induction. Using a schematic diagram illustrate how this concept is used in
converting wind energy into electrical energy?

https://youtu.be/Y18N-hi5P1o
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2. (5 points.) In the following YouTube video,

https://youtu.be/k2RzSs4_Ur0,

William Berner, University of Pennsylvania, illustrates Lenz’s law. Why doesn’t the ring slow down when
it is cut?

3. (5 points.) Figure 31.11 shows a snapshot of a rectangular coil being pushed through a uniform magnetic
field directed into the page. Determine the direction of induced current in the loop at the instance shown
in the figure. Given L = 10.0 cm, v = 5.0m/s, and B = 1.2T,
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Figure 31.8: Problem 3.

31.4.2 Problems based on lectures

1. (10 points.) An elastic conducting material is stretched into a circular loop of 15 cm radius. It is placed
with its plane perpendicular to a uniform 0.50T magnetic field. When released, the radius of the loop
starts to shrink at the rate of 72 cm/s.

(a) What is the direction of the induced current?

(b) What EMF is induced in the loop?

Solution

2. (10 points.) Figure 31.10 shows a conducting rod being pulled along horizontal, frictionless, conducting
rails at a constant speed v. A uniform magnetic field B fills the region in which the rod moves. Assume
L = 10.0 cm, v = 5.0m/s, B = 1.2T, and R = 0.40Ω.

(a) Is the magnetic flux in the loop increasing or decreasing?

(b) What is the direction of the induced current in the loop?

(c) Determine the magnitude of the induced current in the loop.

Solution

3. (10 points.) Figure 31.10 shows a conducting rod being pulled along horizontal, frictionless, conducting
rails at a constant speed v. A uniform magnetic field B fills the region in which the rod moves. Assume
L = 10.0 cm, v = 5.0m/s, B = 1.2T, and R = 0.40Ω.

(a) What is the rate of change of magnetic flux in the loop?

(b) How is the rate of change of magnetic flux in the loop related to the induced current in the loop?

https://youtu.be/k2RzSs4_Ur0
https://youtu.be/4lS8RTzJFV8
https://youtu.be/dhWirUz9mwQ
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Figure 31.10: Problem 3

4. (10 points.) Figure 31.11 shows five snapshots of a rectangular coil being pushed across the dotted region
where there is a uniform magnetic field directed into the page. Outside of this region the magnetic field
is zero. Determine the direction of induced current in the loop at each of the five instances in the figure.
Given L = 10.0 cm, v = 5.0m/s, and B = 1.2T, determine the induced EMF in the loop at each of the
five instances in the figure.

Solution

5. (10 points.) Two parallel rails with negligible resistance are a distance L = 12 cm apart and are connected
by a resistor of resistance R = 5.00Ω. The circuit also contains two metal rods having negligible resistances
sliding along the rails, see Fig. 31.12. The rods are pulled at constant speeds of v1 = 4.00m/s and
v2 = 2.00m/s, respectively. A uniform magnetic field of magnitude B = 0.010T is applied perpendicular
to the plane of the rails. Determine the direction and magnitude of current in resistance R3. Let R1 =
R2 = R3 = R.

Solution

6. (10 points.) Consider the diagram shown in Figure 31.13. The rods are pulled with uniform speeds
v1 = v2 = 30.0m/s. Let R1 = R2 = R3 = 300.0Ω, l = 10.0 cm, B = 0.10T. Find the current in resistance
R3.

7. (10 points.) A transformer consists of two coils wound on the same cylinder such that the flux through
both the coils is the same, that is,

dΦ1

dt
=

dΦ2

dt
. (31.20)

Thus, using Faraday’s law derive the ratio of the voltages in the two coils to be given by

V1

V2

=
N1

N2

. (31.21)

https://youtu.be/hwHbmJ4k4lI
https://youtu.be/mW7_Cb8qZyo
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Figure 31.11: Problem 4.
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Figure 31.12: Problem 5

Energy conservation requires the power in the coils to be the same, that is P1 = P2. Thus, further derive

I2
I1

=
N1

N2

. (31.22)

A device operates at V2 = 10.0V. It uses a transformer to get the required voltage when plugged into a
wall socket with voltage V1 = 120V.

(a) Determine the ratio of the turns in the two coils inside the transformer.

(b) If the device pulls a current of 120mA, determine the current coming out of the wall socket.

Solution

8. (10 points.) Consider the area enclosed by the loop formed in the configuration shown in Figure 31.14.
The rotation described in the figure effectively changes the area enclosed by the loop periodically.

(a) For uniform angular speed of rotation ω, with θ = ωt, show that

d cos θ

dt
= −ω sinωt, (31.23)

Then, show that the induced EMF in the loop is given by

∆Veff = BAω sinωt. (31.24)

Determine the maximum induced voltage for B = 0.10T, radius a = 10.0 cm, and angular speed of
rotation of 600 revolutions per minute (ω = 20.0π rad/s).

(b) Qualitatively plot the induced voltage as a function of time.

Solution

https://youtu.be/1WB2f3K2FPQ
https://youtu.be/8MLNmOQgloA
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Figure 31.13: Problem 6
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Figure 31.14: Problem 8



Chapter 32

Inductance

32.1 Inductor

An inductor is an electrical component that stores energy in the form of magnetic field. This should be
contrasted with a capacitor that stores energy in the form of electric field. In both these devices the stored
energy effectively creates an electric potential difference across the device. A coil of conducting wire is a simple
example of an inductor. The electric potential difference across an inductor can always be expressed in the form

V = L
dI

dt
, (32.1)

where L is the inductance, which is completely determined by the geometry of the inductor and the permeability
of the medium that stores the magnetic energy. It is instructive to observe that the dimension of inductance is

[L] = [µ0][Length]. (32.2)

Inductance is measured in the units of Henry, a derived unit. For calculating the (self) inductance of an arbitrary
loop, or the (mutual) inductance of two current carrying wires, it is often convenient to observe that

L =
NΦB

I
. (32.3)

Lecture-Example 32.1: (Self inductance of a solenoid)
Consider a solenoid characterized by n = N/l, the number of turns N per length l, and the area of crosssection
A. Show that the inductance of the solenoid is given by

L = µ0N
2A

l
= µ0n

2Al. (32.4)

• The inductance L of a solenoid scales with the volume of the solenoid. Thus, verify that the inductance
per unit volume is a finite well-defined physical quantity for the solenoid.

• A solenoid of length l = 5.0 cm and radius r = 0.50 cm has N = 1000 turns. Determine the inductance of
the solenoid. (Answer: 2.0mH.)

Lecture-Example 32.2: (Inductance of a coaxial cable)
A very simple coaxial cable consists of a conducting wire sorrounded by another conductor in the shape of
a right circular cylinder. More realistically, the two conductors are separated by an insulating non-magnetic
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medium and also covered from outside by an insulating medium. Let us consider the case when a uniform
current I flows in opposite directions in the inner and outer conductor. Let us assume the outer conductor to
be infinitely thin and further presume both the conductors to be perfect conductors. Let a and b be the radius
of the inner and outer conductors respectively.

• Using Ampère’s law show that the magnetic field generated by the currents in the coaxial cable is

B(~r) =















0, r < a,

φ̂
µ0I

2πr
, a < r < b,

0, b < r.

(32.5)

Thus, note that the magnetic field, and the magnetic energy, is confined to regions between the two
conductors.

• Evaluate the magnetic flux passing through the φ = 0 plane to be

ΦB = l
µ0I

2π
ln

b

a
. (32.6)

• Determine the inductance of the coaxial cable to be

ΦB = l
µ0

2π
ln

b

a
, (32.7)

which depends only on the geometry of the cable.

32.2 Energy stored in an inductor

Energy consideration based on charge movement inside an inductor lets us identify the power dissipated in the
inductor as

dU

dt
= P = IV = IL

dI

dt
=

d

dt

(

1

2
LI2

)

, (32.8)

which lets us identify the energy stored in the inductor to be

UB =
1

2
LI2, (32.9)

up to a constant. The energy in an inductor is stored in the form of magnetic field. For the case of a coaxial
cable, this statement is verified by expressing the energy per unit volume in the form

uB =
UB

Volume
=

B2

2µ0

. (32.10)

In this sense, inductance is a measure of the energy that can be lost or stored in the form of magnetic field in
a region of space.

Lecture-Example 32.3: (Magnetic energy stored in a solenoid)
Using the expression for magnetic energy per unit volume of space,

dUB

dV
=

B2

2µ0

, (32.11)
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and integrating over space, show that the magnetic energy stored inside a solenoid is equal to

UB =
1

2
LI2. (32.12)

Lecture-Example 32.4: (Magnetic energy stored in a coaxial cable)
Using the expression for magnetic energy per unit volume of space,

dUB

dV
=

B2

2µ0

, (32.13)

and integrating over space, show that the magnetic energy stored inside a coaxial cable is equal to

UB =
1

2
LI2. (32.14)

32.3 RL circuit

A resistor and inductor in series constitutes a RL circuit. An inductor resists a change in current. Thus, it is
the inertia of current. An obvious scenario when sharp changes in current occur in a circuit is when the switch
is turned on or off. An inductor in these instances smoothen the changes in currents.

Switching on a RL circuit

V

R

L

R

L

Figure 32.1: RC circuit: Charging and discharging of a capacitor.

A resistor and an inductor in series with a battery is governed by the equation, using Kirchhoff’s law,

V − IR − L
dI

dt
= 0. (32.15)

We can solve this differential equation for the initial condition

I(0) = 0 (32.16)

to yield

I(t) =
V

R

[

1− e−
t

L/R

]

. (32.17)
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t

I(t)

τ

V
R

Figure 32.2: Switching on a RL circuit.

Thus, it takes infinite time for the current to reach its maximum value, I(∞) = V/R. Nevertheless, the rate at
which the current increases is governed by τ = L/R, which is called the time constant of the RL circuit.

Lecture-Example 32.5: (Time constant)
Show that the current passing through a resistor at time t = τ = L/R, during the process of switching on a RL
circuit, is

I(τ) =
V

R

(

1− 1

e

)

∼ 0.632
V

R
. (32.18)

• Evaluate the time constant τ for the case R = 1.0MΩ and L = 1.0mH. (Answer: τ = 1.0ms.)

32.4 LC circuit

An inductor and a capacitor in series constitutes a LC circuit. A capacitor stores energy in the form electric
field and an inductor stores energy in the form of magnetic field. Thus, an ideal LC circuit leads to oscillations
in current, corresponding to the oscillations in the electric and magnetic energy.

CL

Figure 32.3: LC circuit: Oscillations.

• Using Kirchhoff’s law write the differential equation governing an inductor and a capacitor in series,

−L
dI

dt
− CQ = 0. (32.19)
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• For the initial conditions

Q(0) = Q0, (32.20a)

I(0) = 0, (32.20b)

the solution to the differential equation in Eq. (5a) is

Q(t) = Q0 cosωt (32.21)

and
I(t) = −ωQ0 sinωt, (32.22)

where the angular frequency of oscillation is given by

ω =
1√
LC

. (32.23)

32.5 LCR circuit

An inductor, a resistor, and a capacitor, in series constitutes a LCR circuit. The resistance causes the oscillations
to get damped.

C

R

L

Figure 32.4: LCR circuit: Damped oscillations.

An inductor, a resistor, and a capacitor, when connected in series is governed by the differential equation,
using Kirchhoff’s law

−L
dI

dt
− IR− Q

C
= 0. (32.24)

Thus, we have the differential equation

[

d2

dt2
+ 2γ

d

dt
+ ω2

0

]

Q(t) = 0 (32.25)

with initial conditions

Q(0) = Q0, (32.26a)

I(0) = 0, (32.26b)

where

ω2
0 =

1

LC
, 2γ =

R

L
. (32.27)

1. γ = 0: In the absence of the resistor show that the solution is

Q(t) = Q0 cosω0t. (32.28)
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2. γ < ω0: Underdamped oscillations.

Q(t) = Q0 e
−γt

[

cos
√

ω2
0 − γ2t+

γ
√

ω2
0 − γ2

sin
√

ω2
0 − γ2t

]

. (32.29)

3. γ = ω0: Critically damped.
Q(t) = Q0 e

−ω0t [1 + ω0t] . (32.30)

4. γ > ω0: Overdamped.

Q(t) = Q0 e
−γt

[

cosh
√

γ2 − ω2
0t+

γ
√

γ2 − ω2
0

sinh
√

γ2 − ω2
0t

]

. (32.31)

5. Set ω0 = 1, which is equivalent to the substitution ω0t = τ , and sets the scale for the time t. That is,
time is measured in units of T = 2π/ω0. The system is then completely characterized by the parameter
γ/ω0 and the initial conditions. Plot the solutions.

32.6 Problems

32.6.1 Conceptual questions

1. (5 points.) List the challenges associated with wireless energy transmission.

32.6.2 Problems based on lectures

1. (10 points.) The inductance per unit length of a coaxial cable is given by

L

l
=

µ0

2π
ln

b

a
. (32.32)

Recall that the capcitance per unit length of a coxial cable geometry is given by

C

l
=

2πε0
(

ln
b

a

) . (32.33)

Thus, show that
L

l

C

l
=

1

c2
. (32.34)

Link to Solution will be updated here

2. (10 points.) A solenoid has one hundred turns per 5.0 cm of it’s length and has a crosssectional radius
of 0.40mm. It carries a current of 1.0A.

(a) What is the magnitude of the magnetic field generated by the solenoid?

(b) What is the inductance per unit length of the solenoid.

(c) How much magnetic energy is stored per unit length of the solenoid?

Solution

3. (10 points.) Consider a coaxial cable of length l consisting of an inner conductor in the shape of a right
circular cylinder of radius a surrounded by another concentric conductor in the shape of a cylindrical shell
of radius b. Let a steady current flow in opposite directions in the inner of outer conductors.

https://youtu.be/D83XCp59ZxM
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(a) Using Ampère’s law show that the magnetic field generated by the two currents in the coaxial cable
is

B(~r) =















0, r < a,

φ̂
µ0I

2πr
, a < r < b,

0, b < r,

(32.35)

so that the magnetic field, and the magnetic energy, generated by the wires is confined to the region
between the conductors. Here r and φ are cylindrical polar coordinates on a plane perpendicular to
the symmetry axis of the cable.

(b) Evaluate the magnetic flux passing through the half-plane φ = 0 to be

ΦB = l
µ0I

2π
ln

b

a
. (32.36)

(c) Determine the inductance of the coaxial cable, using L = ΦB/I, to be

L = l
µ0

2π
ln

b

a
, (32.37)

which depends only on the geometry of the cable. Calculate the inductance per unit length of a
coaxial cable with inner radius of 2.0mm and outer radius of 4.0mm.

Solution

4. (10 points.) Consider a series RL circuit.

V

R

L

Figure 32.5: A series RL circuit.

(a) Using Kirchhoff’s law, write down the (differential) equation relating the current I in the circuit and
the rate of change of current dI/dt in the circuit.

(b) The solution to the equation, in Question (4a), for the initial condition I(0) = 0 is given by

I(t) =
V

R

[

1− e−
t

(L/R)

]

. (32.38)

What is the maximum current that flows through the circuit? How much time does it take to attain
this maximum current in the circuit? How much time does it take to attain half of this maximum
current in the circuit? Given L = 1.0mH, R = 1.0MΩ, and V = 110.0V.

Solution

5. (10 points.)

https://youtu.be/MS9EAafiNpE
https://youtu.be/E92VPGtH23A
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CL

Figure 32.6: LC circuit.

(a) Using Kirchhoff’s law write the differential equation governing an inductor and a capacitor in series.

(b) For the initial conditions

Q(0) = Q0, (32.39a)

I(0) = 0, (32.39b)

the solution to the differential equation in Question (5a) is

Q(t) = Q0 cosωt (32.40)

and

I(t) = −ωQ0 sinωt, (32.41)

where the angular frequency of oscillation is given by

ω =
1√
LC

. (32.42)

(c) A simple radio receiver uses a LC circuit to tune. If such a radio uses a variable capacitor and a
1.0mH inductor, what is the capacitance that will tune to a 5.0MHz signal?

Solution

6. (10 points.) Electromagnetic waves are oscillations of electric and magnetic fields that sustain each other
using Faraday and Maxwell laws. The speed of all electromagnetic waves is the same in vacuum and is
called the speed of light in vacuum and is given by

c =
1√
ε0µ0

. (32.43)

In SI units c is chosen to be a whole number,

c = 299 792 458
m

s
. (32.44)

(a) The wave nature stipulates the relation between wavelength λ, frequency f , and speed c of the wave,

c = λf. (32.45)

The time period T = 1/f , and the wavevector k = 2π/λ, are related quantities. Calculate the
frequency associated with a monochromatic wave of red light of wavelength 632.8 nm.

https://youtu.be/SAMlINe-RQg
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(b) The electromagnetic energy density is given by

u =
1

2
ε0E

2 +
1

2µ0

B2. (32.46)

Given that the red monochromatic wave consists of a maximum electric field strength of 20.0V/m,
determine the associated maximum magnetic field strength. (Hint: E = cB.) Calculate the electro-
magnetic energy per unit volume for the red light. Also, show that the electrical energy density is
equal to the magnetic energy density.

(c) The flux of the electromagnetic energy density, a measure of the flow rate of electromagnetic energy
per unit area, is given by the Poynting vector

~S =
1

µ0

~E× ~B. (32.47)

The electromagnetic momentum density is given by

~G =
1

c2
~S. (32.48)

Calculate the magnitude of the electromagnetic momentum density for the red light.

Solution

https://youtu.be/6Xe83RRaZxs
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Chapter 33

Electromagnetic waves

33.1 Maxwell’s equations

Let us analyse the Ampère law for a RC circuit, while the capacitor is charging. Using Ampère’s law in Fig. 33.1,
and using the ambiguity in defining the surface bounded by a curve, we deduce

V

R

C

S1

S2

Figure 33.1: Ampère’s law for an RC circuit.

∮

~B · d~l =
{

µ0I, for surface S1,

0, for surface S2.
(33.1)

This apparent contradiction was removed by Maxwell by restating the Ampère law as
∮

~B · d~l = µ0I + µ0ε0
dΦE

dt
, (33.2)

which implies that a rate of change of the electric flux can also generate a magnetic field.
Thus, the four independent laws that govern the electric and magnetic field in a region of space, in integral

form, are the following.
∮

~E · d~A =
Qen

ε0
(Gauss’s law for ~E) (33.3a)

∮

~B · d~A = 0 (Gauss’s law for ~B) (33.3b)

∮

~E · d~l = −dΦB

dt
(Faraday’s law) (33.3c)

∮

~B · d~l = µ0ε0
dΦE

dt
+ µ0I (Ampère’s law) (33.3d)
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The above four equations are collectively called the Maxwell equations. The symmetry in the electric and
magnetic effects is striking in the above equations, which would have been complete if not for the absence of
magnetic charges and magnetic currents. There is no conclusive experimental observation of magnetic charges.

The Maxwell equations in the integral form can be rewritten in differential form, using the calculus of the
differential vector operator

~∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(33.4)

as the following.

~∇ · ~E =
1

ε0
ρ (Gauss’s law for ~E) (33.5a)

~∇ · ~B = 0 (Gauss’s law for ~B) (33.5b)

~∇× ~E =
d~B

dt
(Faraday’s law) (33.5c)

~∇× ~B = µ0ε0
d~E

dt
+ µ0

~J (Ampère’s law) (33.5d)

Here we introduced the charge per unit volume ρ(~r) and the current per unit area ~J(~r),
∫

dV ρ(~r) = Q, (33.6a)

∫

d~A · ~J(~r) = I. (33.6b)

33.2 Electromagnetic waves

The Maxwell equations imply that, in a region of space where there are no charges and currents, the electric
and magnetic fields satisfy the wave equations

∇2~E =
1

c2
∂2~E

∂t2
, (33.7a)

∇2~B =
1

c2
∂2~B

∂t2
, (33.7b)

where the speed of these waves, called the speed of light, is

c =
1√
µ0ε0

. (33.8)

The meter, in SI units, is defined as the distance travelled by light in vacuum in 1/299 792 458 of a second. As
a consequence, the speed of light in vacuum, in SI units, is expressed as a whole number,

c = 299 792 458
m

s
. (33.9)

These electromagnetic waves, which are oscillations of the electric and magnetic fields in space and time, can
sustain each other.

Properties of electromagnetic waves in vacuum

1. The wave nature stipulates the relation between the wavelength λ, frequency f , and speed c of the wave,

c = λf. (33.10)

The time period T = 1/f , and the wavevector k = 2π/λ, are related quantities.
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Frequency Wavelength
105Hz 103m AM radio wave
108Hz 100m FM radio wave
1011Hz 10−3m Microwave
1015Hz 10−6m Visible light
1017Hz 10−9m X ray
1023Hz 10−15m Gamma ray

Table 33.1: Orders of magnitude (electromagnetic wave)

2. The electromagnetic energy density is given by

u =
1

2
ε0E

2 +
1

2µ0

B2. (33.11)

The flux of the electromagnetic energy density, a measure of the flow rate of electromagnetic energy per
unit area, is given by the Poynting vector

~S =
1

µ0

~E× ~B. (33.12)

The electromagnetic momentum density is given by

~G =
1

c2
~S. (33.13)

3. The Maxwell equations constraint the directions of the electric field, the magnetic field, and the direction
of propagation to be mutually perpendicular,

~E× ~B = k̂ cµ0u, ~E · ~B = 0. (33.14)

Further, we have
E = cB. (33.15)

Lecture-Example 33.1: (Absorption coefficient of liquid water)
Using the absorption coefficient of water as a function of frequency presented in the following link

http://www.britannica.com/science/absorption-coefficient/images-videos

argue that kilometer long waves (extremely low-frequency waves) are suitable candidates for communications
between land base and submarines. (Inverse of absorption coefficient is a measure of how deep the wave will
travel in water before getting absorbed.)

Lecture-Example 33.2: (X-ray telescope)
Using the opacity of electromagnetic waves as a function of the wavelength of eleactromagnetic waves presented
in the following link

Wikipedia: Opacity of atmosphere to electromagnetic waves

argue that an X-ray telescope has to be necessarily installed above the atmosphere in space. Further, discuss
radio-wave astronomy and gamma-ray astronomy.

http://www.britannica.com/science/absorption-coefficient/images-videos
https://en.wikipedia.org/wiki/Electromagnetic_radiation#/media/File:Atmospheric_electromagnetic_opacity.svg
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33.3 Problems

33.3.1 Conceptual questions

1. (5 points.) Using the opacity of electromagnetic waves as a function of the wavelength of eleactromagnetic
waves presented in the following link

Wikipedia: Opacity of atmosphere to electromagnetic waves

argue that an X-ray telescope has to be necessarily installed above the atmosphere in space. Further,
discuss radio-wave astronomy and gamma-ray astronomy.

33.3.2 Problems based on lectures

1. (10 points.)

https://en.wikipedia.org/wiki/Electromagnetic_radiation#/media/File:Atmospheric_electromagnetic_opacity.svg


Part III

Optics
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Chapter 34

Ray Optics: Reflection

Visible light is an electromagnetic wave, oscillations of electric and magnetic fields in space and time. The
wavelength of visible light is in the range of 0.400−0.700µm. When the size of irregularities at the interface of two
mediums is smaller than the wavelength of visible light, it is a good approximation to treat the electromagnetic
wave by rays of light, along the direction of propagation of the waves, which are perpendicular to the surfaces
formed by the wave fronts. The study of propagation of light, in this straight line approximation, is called ray
optics.

Visible light, and other electromagnetic waves, can not penetrate into a perfect conductor, because electric
field has to be zero inside a perfect conductor. A metal, like gold and silver, is a perfect conductor to a good
approximation. The surface of a metal is naturally smooth. The surface of a perfect conductor will be called a
mirror. The mirrors we typically find in daily use, consists of a slab of glass with a coating of metal on one of
the surfaces of the slab.

34.1 Law of reflection

Propagation of light at the interface of a medium and a mirror is governed by the law of reflection that states
that the angle of incidence is equal to the angle of reflection.

θ
θ

inc
ide

nt
ra
y

re
fle
cte

d
ra
y

normal

Figure 34.1: A ray of light reflected by a mirror.

Image formation as a perception of our eye

Our eye extrapolates two or more rays of light and the point of intersection of these rays is perceived as a source
or image. If the light passes through the point of intersection of the extrapolated rays, it is perceived as a real
image. Image formed by a overhead projector is a real image. If the light does not pass through the point of
intersection of the extrapolated rays, it is perceived as a virtual image. Image formed by a bathroom mirror is
a virtual image.
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object

image

image object

Figure 34.2: Images as perceived by an eye.

Lecture-Example 34.1: (Optimal mirror placement)
Your height is h. The vertical distance between your eye and top of head is h1, and between your eye and toe
is h2.

h1

h2

y1

y2

Figure 34.3: Lecture-Example 34.1

• What is the minimum height y = y1 + y2 of a mirror you need to place on a vertical wall in which you
can see your complete image?

• Does your answer depend on how far away you stand from the mirror?

Lecture-Example 34.2:
Given α = 30.0◦, in Figure 34.6. Show that θ = 2α.
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α

θ

Figure 34.4: Lecture-Example 34.2

34.2 Spherical mirrors

When the surface of a mirror is part of a sphere, it is called a spehrical mirror. If the inner side of the part of
sphere forms the reflecting surface, it is called a concave mirror. If the outer side of the part of sphere forms the
reflecting surface, it is called a convex mirror. The center of the sphere, of which the mirror is a part, is called
the center of curvature. The radius of this sphere is called the radius of curvature. A line passing through the
center of curvature and the center of the mirror will be defined to the optical axis, the direction being that of
a light ray. The focal point is the point half way between the center of curvature and center of mirror, and the
corresponding distance is the focal length,

f =
R

2
. (34.1)

The sign conventions, and the related terminologies, is summarized in Figure 34.5.

fR

f(concave mirror) + − (convex mirror)

do(real object) + − (virtual object)

di(real image) + − (virtual image)

ho, hi

+ (upright)

− (inverted)

Figure 34.5: Sign conventions for spherical mirrors. The mirror pictured is a concave mirror.

Mirror formula

Using the law of reflection and the geometry of a circle we can deduce the mirror formula

1

do
+

1

di
=

1

f
, (34.2)

and the expression for magnification,

m =
hi

ho

= − di
do

. (34.3)
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Lecture-Example 34.3: (Plane mirror)
A plane mirror has an infinite radius of curvature. Using the mirror formula, conclude that the image distance
is equal to the negative of the object distance, di = −do. Thus, deduce that, the image formed when you stand
in front of a plane mirror is virtual and upright.

Lecture-Example 34.4: (Concave mirror)
An object of height ho = 1.0 cm is placed upright at a distance do in front of a concave mirror. The mirror’s
focal length is f = +10.0 cm.

• Let do = +30.0 cm. Calculate the image distance. (Answer: di = +15 cm.) What is the magnification?
(Answer: m = −0.50.) Is the image real or virtual? Is the image inverted or upright? Verify your results
using a ray diagram drawn.

• Repeat for do = +20.0 cm. (Answer: di = +20.0 cm, m = −1.0.)

• Repeat for do = +15.0 cm. (Answer: di = +30.0 cm, m = −2.0.)

• Repeat for do = +10.0 cm. (Answer: di → ±∞ cm, m → ±∞.)

• Repeat for do = +5.0 cm. (Answer: di = −10.0 cm, m = +2.0.)

Lecture-Example 34.5: (Convex mirror)
An object of height ho = 1.0 cm is placed upright at a distance do in front of a convex mirror. The mirror’s
focal length is f = −10.0 cm.

• Let do = +30.0 cm. Calculate the image distance. (Answer: di = −7.5 cm.) What is the magnification?
(Answer: m = +0.25.) Is the image real or virtual? Is the image inverted or upright? Verify your results
using a ray diagram drawn.

• Verify that the image is always virtual, upright, and diminished.

• Rear view mirrors on automobiles are convex mirrors. Understand the following warning statement re-
garding rear viw mirrors, “Objects in mirror are closer than they appear”.

34.3 Problems

34.3.1 Conceptual questions

1. (5 points.) Using plane mirrors alone design a setup that will allow you to see the back of your head.

2. (5 points.) In the following YouTube video,

https://youtu.be/GAmWs6zfTj8,

John Howell, Professor of Physics at the University of Rochester, explains a simple cloaking device using
four plane mirrors. What are the challenges in designing a cloaking device?

3. (5 points.) Light takes 8.0minutes to travel from A to B. Determine the distance between A and B in
light-years. Compare this to the distance between Sun and Earth.

Solution

https://youtu.be/GAmWs6zfTj8
https://youtu.be/97HH1ACM5Uw
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4. (5 points.) The distance to the North Star, Polaris, is approximately 6.44 × 1018 m. If Polaris were to
burn out today, how many years from now would we on Earth see it disappear?

Solution (Problems 1 and 2 are collected in a single video.)

5. (5 points.) What is the difference between a virtual image and a real image. Give an example of a real
image.

34.3.2 Problems based on lectures

1. (10 points.) Given α = 60.0◦, in Figure 34.6. Find θ.

α

θ

Figure 34.6: Problem 1

Solution

2. (10 points.) A 1.0 cm object is placed upright at a distance 10.0 cm away from a convex mirror. The
mirror’s focal length is 10.0 cm.

(a) What is the radius of curvature of the mirror?

(b) Calculate the image distance.

(c) What is the magnification?

(d) Is the image real or virtual?

(e) Is the image inverted or upright?

(f) Determine the height of the image.

(g) Confirm your results by drawing a ray diagram for the above case. Choose the scale for the two
relevant directions appropriately so that the relevant features are illustrated well. Points will be
awarded for clarity and accuracy.

Solution

3. (10 points.) A 1.0 cm object is placed upright at a distance 5.0 cm away from a concave mirror. The
mirror’s focal length is 10.0 cm.

(a) What is the mirror’s radius of curvature?

(b) Calculate the image distance.

(c) What is the magnification?

(d) Is the image real or virtual?

(e) Is the image inverted or upright?

(f) Determine the height of the image.

https://youtu.be/97HH1ACM5Uw
https://youtu.be/IuUl956PYl8
https://youtu.be/UObEJnykiRg
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(g) Confirm your results by drawing a ray diagram for the above case. Choose the scale for the two
relevant directions appropriately so that the relevant features are illustrated well. Points will be
awarded for clarity and accuracy.

Solution

https://youtu.be/QMQ83jygoBQ


Chapter 35

Ray optics: Refraction

35.1 Index of refraction

Electromagnetic waves travel at the speed of light c in vacuum. But, they slow down in a medium. The
refractive index of a medium

n =
c

v
(35.1)

is a measure of the speed of light v in the medium. Refractive index of a medium is always greater than or
equal to unity. The speed of light in a medium varies with the color of light. Thus, for the same medium, the
refractive index changes with the color of light, a phenomena called dispersion.

35.2 Law of refraction

The law of refraction, or Snell’s law, relates the angle of incidence and angle of refraction at the interface of two
mediums,

n1 sin θ1 = n2 sin θ2. (35.2)

It can be derived using Fermat’s principle that states that light takes the path of least time. As a consquence,
a ray light bends towards the normal when it goes from a denser to a rarer medium, and vice versa.

Lecture-Example 35.1: (Apparent depth)
Determine the apparent depth h′ of a swimming pool of real depth h.

• Show that
h′ tan θ1 = h tan θ2. (35.3)

Then, show that, for small angles we have

h′ =
n1

n2

h. (35.4)

Evaluate the apparent depth for h = 2.0m, n1 = 1.0, and n2 = 1.33. (Answer: h′ = 1.5m.)

1 vacuum
1.0003 air
1.33 water
1.5 glass
2.4 diamond

Table 35.1: Orders of magnitude (refractive index).
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θ1

θ2

n1

n2 h
h′

Figure 35.1: Lecture-Example 35.1

Lecture-Example 35.2: (Prism)
Light travels through a prism made of glass (n = 1.5) as shown in Figure 35.5. Given α = 50◦ and i1 = 45◦.
Determine the angle of deviation δ.

α

δ

r1 r2
θ

i1

i2
Q

P

R

S

A

GlassAir

Figure 35.2: Lecture-Example 35.2

35.3 Total internal reflection

When light passes from a denser to a rarer medium, it bends away from the normal. As a consequence, there
exists a critical angle beyond which there is no refraction. The critical angle is determined using θ2 = 90◦, for
n1 > n2,

n1 sin θc = n2. (35.5)

Lecture-Example 35.3:
The index of refraction of benzene is 1.80. Determine the critical angle for total internal reflection at a benzene-
air interface. (Answer: θc = 33.8◦.)

Lecture-Example 35.4: (Fiber optic cable)
Figure 35.3 shows the crosssection of a fiber optic cable made out of a material of refractive index n in air.
Light needs to satisfy the conditions for total internal reflection at the interfaces to avoid loss, which in turn
defines an acceptance cone of (total) angle 2θ.

• Using Snell’s law at the interface (of the feeding side) show that

1.0 sin θ = n sin(90◦ − θc). (35.6)
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θ θ

θc

Figure 35.3: Lecture-Example 35.4

Using Snell’s law at the interface (forming the circular side of cylinder) show that

n sin θc = 1.0 sin90◦. (35.7)

Show that the (half) acceptance angle θ satisfies the relation

sin θ ≤
√

n2 − 1. (35.8)

• Evaluate the (half) acceptance angle for water (n = 1.33). This allows light to follow a stream of water,
giving the impression of bending of light. For example, check out this YouTube video.

• Evaluate the (half) acceptance angle for a material medium with refractive index n =
√
2. What happens

when the material medium has a refractive index larger than
√
2? For example, glass with n = 1.5.

Lecture-Example 35.5: (Examples)

• Optical phenomenon called mirage.

35.4 Thin spherical lens

When the surface of the interfaces enclosing a medium is spherical in shape, on both sides, it is called a thin
spherical lens. The focal length of a thin spherical lens is given in terms of the radius of curvatures of the two
interfaces, R1 and R2,

1

f
= (n− 1)

[

1

R1

− 1

R1

]

. (35.9)

The sign conventions, and the related terminologies, is summarized in Figure 35.4.

Lens formula

Using the law of refraction and the geometry of a circle we can deduce the lens formula

1

do
+

1

di
=

1

f
, (35.10)

and the expression for magnification,

m =
hi

ho

= − di
do

. (35.11)

https://www.youtube.com/watch?v=hBQ8fh_Fp04
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f

f(concave lens) − + (convex lens)

do(real object) + − (virtual object)

di(virtual image) − + (real image)

ho, hi

+ (upright)

− (inverted)

Figure 35.4: Sign conventions for spherical lenses.

Lecture-Example 35.6: (Convex lens)
An object of height ho = 1.0 cm is placed upright at a distance do in front of a convex lens. The lens’ focal
length is f = +10.0 cm.

• Let do = +30.0 cm. Calculate the image distance. (Answer: di = +15 cm.) What is the magnification?
(Answer: m = −0.50.) Is the image real or virtual? Is the image inverted or upright? Verify your results
using a ray diagram drawn.

• Repeat for do = +20.0 cm. (Answer: di = +20.0 cm, m = −1.0.)

• Repeat for do = +15.0 cm. (Answer: di = +30.0 cm, m = −2.0.)

• Repeat for do = +10.0 cm. (Answer: di → ±∞ cm, m → ±∞.)

• Repeat for do = +5.0 cm. (Answer: di = −10.0 cm, m = +2.0.)

Lecture-Example 35.7: (Concave lens)
An object of height ho = 1.0 cm is placed upright at a distance do in front of a concave lens. The lens’ focal
length is f = −10.0 cm.

• Let do = +30.0 cm. Calculate the image distance. (Answer: di = −7.5 cm.) What is the magnification?
(Answer: m = +0.25.) Is the image real or virtual? Is the image inverted or upright? Verify your results
using a ray diagram drawn.

• Verify that the image is always virtual, upright, and diminished.

35.5 Problems

35.5.1 Conceptual questions

1. (5 points.) What is a Fresnel lens?

2. (5 points.) What property of an object at the atomic scale contributes to the index of refraction?

3. (5 points.) Can the refractive index of a material be less than unity? Explain.
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4. (5 points.) Explain why light seems to be bending in the following YouTube video by Harvard Natural
Sciences Lecture Demonstrations,

https://youtu.be/XrWB0KLXpn8.

5. (5 points.) In the following YouTube video,

https://youtu.be/Lic3gCS_bKo

Dr. Boyd F. Edwards demostrates total internal reflection in optical fiber. What percent of Internet
communication uses optical fiber?

6. (5 points.) When light passes from air (n = 1.0) to glass (n = 1.5), it bends:

(a) toward the normal without changing speed.

(b) toward the normal and slows down.

(c) toward the normal and speeds up.

(d) away from the normal and slows down.

(e) away from the normal and speeds up.

7. (5 points.) An upright object is located between a concave lens and its focal point. Its image is: (Pick
the correct answer.)

(a) real, upright, and larger than the object.

(b) real, upright, and smaller than the object.

(c) real, inverted, and larger than the object.

(d) real, inverted, and smaller than the object.

(e) virtual, upright, and larger than the object.

(f) virtual, upright, and smaller than the object.

(g) virtual, inverted, and larger than the object.

(h) virtual, inverted, and smaller than the object.

35.5.2 Problems based on lectures

1. (10 points.) The critical angle at a material-water interface for total internal reflection is 60.0◦. Given
that the refractive index of water is 1.33. Determine the speed of light in the material.

2. (10 points.) The index of refraction of benzene is 1.80. Determine the critical angle for total internal
reflection at a benzene-air interface.
Solution

3. (10 points.) A glass optical fiber (ng = 1.50) is submerged in water (nw = 1.33). What is the critical
angle of incidence for light to stay inside the fiber?

4. (10 points.) Light travels through a prism made of glass (n = 1.5) as shown in Figure 35.5. Given
α = 50◦ and i1 = 45◦. Determine the angle of deviation δ.
Solution

5. (10 points.) A 1.0 cm object is placed upright at a distance 10.0 cm away from a convex lens. The lens’
focal length is 10.0 cm.

(a) Calculate the image distance.

https://youtu.be/XrWB0KLXpn8
https://youtu.be/Lic3gCS_bKo
https://youtu.be/bHiCO5LzzwQ
https://youtu.be/epaPEdGAiRY
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Figure 35.5: Problem 4

(b) What is the magnification?

(c) Is the image real or virtual?

(d) Is the image inverted or upright?

(e) Confirm your results by drawing a ray diagram for the above case. Choose the scale for the two
relevant directions appropriately so that the relevant features are illustrated well. Points will be
awarded for clarity and accuracy.

Solution

6. (10 points.) A 1.0 cm object is placed upright at a distance 15.0 cm away from a concave lens. The lens’
focal length is 10.0 cm.

(a) Calculate the image distance.

(b) What is the magnification?

(c) Is the image real or virtual?

(d) Is the image inverted or upright?

(e) Confirm your results by drawing a ray diagram for the above case. Choose the scale for the two
relevant directions appropriately so that the relevant features are illustrated well. Points will be
awarded for clarity and accuracy.

Solution

https://youtu.be/kGxHJ4TqKrk
https://youtu.be/G4BtZXAktV8
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